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The virial stress is the most commonly used de¯nition of stress in discrete parti-
cle systems. This quantity includes two parts. The ¯rst part depends on the mass
and velocity (or, in some versions, the °uctuation part of the velocity) of atomic
particles, re°ecting an assertion that mass transfer causes mechanical stress to be
applied on stationary spatial surfaces external to an atomic-particle system. The sec-
ond part depends on interatomic forces and atomic positions, providing a continuum
measure for the internal mechanical interactions between particles. Historic deriva-
tions of the virial stress include generalization from the virial theorem of Clausius
(1870) for gas pressure and solution of the spatial equation of balance of momen-
tum. The virial stress is a stress-like measure for momentum change in space. This
paper shows that, contrary to the generally accepted view, the virial stress is not
a measure for mechanical force between material points and cannot be regarded as
a measure for mechanical stress in any sense. The lack of physical signi¯cance is
both at the individual atom level in a time-resolved sense and at the system level
in a statistical sense. It is demonstrated that the interatomic force term alone is
a valid stress measure and can be identi¯ed with the Cauchy stress. The proof in
this paper consists of two parts. First, for the simple conditions of rigid translation,
uniform tension and tension with thermal oscillations, the virial stress yields clearly
erroneous interpretations of stress. Second, the conceptual °aw in the generalization
from the virial theorem for gas pressure to stress and the confusion over spatial and
material equations of balance of momentum in theoretical derivations of the virial
stress that led to its erroneous acceptance as the Cauchy stress are pointed out.
Interpretation of the virial stress as a measure for mechanical force violates balance
of momentum and is inconsistent with the basic de¯nition of stress. The versions of
the virial-stress formula that involve total particle velocity and the thermal °uctua-
tion part of the velocity are demonstrated to be measures of spatial momentum °ow
relative to, respectively, a ¯xed reference frame and a moving frame with a velocity
equal to the part of particle velocity not included in the virial formula. To further
illustrate the irrelevance of mass transfer to the evaluation of stress, an equivalent
continuum (EC) for dynamically deforming atomistic particle systems is de¯ned. The
equivalence of the continuum to discrete atomic systems includes (i) preservation of
linear and angular momenta, (ii) conservation of internal, external and inertial work
rates, and (iii) conservation of mass. This equivalence allows ¯elds of work- and
momentum-preserving Cauchy stress, surface traction, body force and deformation
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to be determined. The resulting stress ¯eld depends only on interatomic forces, pro-
viding an independent proof that as a measure for internal material interaction stress
is independent of kinetic energy or mass transfer.

Keywords: virial stress; atomic stress; Cauchy stress; pressure tensor;
molecular dynamics; equivalent continuum

1. Introduction

The widely used virial stress for atomic systems is a tensor quantity that measures
the time rate of change of momentum for spatial regions. Implied in its de¯nition
is the fact that it accounts for the e®ects on momentum change in a spatial region
of both mechanical forces and mass transport across the boundary of the spatial
region. On the other hand, the true mechanical stress (Cauchy stress) measures the
time rate of change of momentum possessed by a ¯xed amount of material mass.
By de¯nition, the Cauchy stress measures the pure e®ect on momentum change of
mechanical forces alone. This paper demonstrates that, contrary to the belief of some
in the physics/mechanics/materials communities, the virial stress is not the Cauchy
stress or any other form of mechanical stress. It does not measure internal mechanical
force in any sense. One version of the virial stress formula involves the total atomic
velocity. Another version involves only the thermal °uctuation of the atomic velocity.
It is shown in this paper that the version that involves the total particle velocity
de¯nes a measure for spatial momentum °ow as it appears to an observer ¯xed
in space. Similarly, the version that involves only the thermal °uctuation velocity
de¯nes a measure for momentum °ow relative to a reference frame moving with a
velocity equal to the part of the particle velocity not included in that version of the
virial formula. The discussions in this paper focus primarily on the ¯rst version of
the virial stress, since the meaning of the second version will become clear through
the discussions. However, discussions will be given to the second version to outline
the conceptual confusion leading to its acceptance by some as a form of mechanical
stress. We begin with a review of the virial concept of stress.

The continuum stress interpretation of atomic force ¯elds is important since it
allows the intensity and nature of internal interactions in materials to be measured.
One of the commonly used de¯nitions of stress in molecular dynamical (MD) systems
is the virial stress. This `stress’ is based on a generalization of the virial theorem of
Clausius (1870) for gas pressure and includes two parts (cf. McLellan 1974; Tsai 1979;
Rowlinson & Widom 1982; Swenson 1983). It is also called the `local atomic level
stress’, `system level stress’, `total stress’ or the `pressure tensor’. In this de¯nition,
the average virial stress over a volume « around a particle i at position ri is

¹¦ =
1
«

µ
¡ mi _ui « _ui + 1

2

X

j ( 6= i)

rij « fij

¶
; (1.1)

where mi is the mass of i, ui is the displacement of i relative to a reference position,
_ui = dui=dt represents material time derivative of ui, rij = rj ¡ ri and « denotes
the tensor product of two vectors. Here, tensile stresses are de¯ned positive. The
interparticle force fij applied on particle i by particle j is

fij =
@© (rij)

@rij

rij

rij
; (1.2)
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where rij = jrij j is the central distance between particles i and j, © (rij) is the energy
of the atomic ensemble and @© (rij)=@rij > 0 if fij is attractive. Note that Newton’s
third law requires that fij = ¡ fji.

Equation (1.1) can also be used to evaluate the average virial stress in a region
containing a number of particles. The ¯rst term on the right-hand side of (1.1) is
included out of the notion that the motion of atoms across a ¯xed spatial surface
(Gibbs dividing surface) at a point `exerts’ a force (dynamic pressure) on that surface.
The second term arises from interatomic forces. The kinetic-energy term is usually
small compared with the interatomic force term for solids but is dominant for gases.
Following the same considerations, Cheung & Yip (1991) de¯ned a stress that varies
from the virial stress only slightly in the treatment of stress components on di®erent
surfaces. Lutsko (1988) derived an expression similar to that in (1.1) by applying
the continuum equation of balance of momentum involving the stress tensor to MD
systems and by conducting a volume averaging of the stress distribution so obtained.
Speci¯cally, he assumed that the singular pointwise stress function ¦(r; t) in an MD
system satis¯es (Lutsko 1988, eqn (1))

@

@r
¢ ¦(r; t) =

d
dt

p(r; t); (1.3)

where the divergence term is given by [@=@r ¢ ¦(r; t)]­ = @¦ ¬ ­ =@r ¬ ( ¬ ; ­ = 1; 2; 3),
summation is implied over the repeated index and r¬ are Cartesian components
of r. Note that the time di®erentiation embodied in dp=dt = _p is the material time
derivative that must be carried out by following material particles as they travel
in space. In contrast, the spatial time derivative @p=@t is carried out for each ¯xed
spatial location r; therefore, @p=@t 6= _p. This di®erence will prove critical in the
ensuing discussions. In general, the material derivative and the spatial derivative are
related via d=dt = @=@t + _r ¢ @=@r.

Here, it must be pointed out ¯rst that Lutsko’s use of the material time derivative
dp=dt is in error (detailed discussions will follow shortly below), and perhaps is
unintended. It is quite likely that he intended to use (19.11) in Zubarev (1974),
which involves the spatial time derivative @p=@t. For thoroughness, the analyses
in this paper will consider both scenarios, with one scenario involving the material
derivative and the other scenario involving the spatial derivative. It will be shown that
if the material time derivative is used as in (1.3), violation of balance of momentum
occurs. Consequently, the quantity ¦ de¯ned by this version of the equation would
have no physical signi¯cance. On the other hand, if the spatial time derivative is
used (as is the case in Cormier et al . (2001) and perhaps as Lutsko had intended)
and the equation is written as

@

@r
¢ ¦(r; t) =

@

@t
p(r; t); (1.4)

the quantity ¦(r; t) would be a measure for momentum change in space (see (2.5)
in x 2 b), as Lutsko correctly pointed out. More importantly, we will show that this
quantity so de¯ned is not a measure for mechanical stress in any sense. This con-
clusion contradicts the interpretation by Lutsko and a notion widely held by many.
Although we will discuss the scenario that involves the material time derivative
and (1.3), the primary premise of this paper will be the assumption that Lutsko
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correctly used (1.4) in his analysis. For now, we continue our review of Lutsko’s
analysis.

As Lutsko (1988) stated, the continuum representation of the momentum density
p(r; t) (momentum per unit volume) of the discrete system is

p(r; t) =
X

i

mi _ui(ri; t) ¯ (r ¡ ri) =
X

i

pi ¯ (r ¡ ri); (1.5)

where ¯ (x) is the Dirac delta function and the summation is performed over all
particles in the system. This expression is singular. Its interpretation should be made
appropriately in an integral sense in order to obtain dimensional consistency. Another
way to look at this issue is to regard ¯ (x) as having the dimension of (length)¡3.
The integration of (1.4) and (1.5) via Fourier transform (more details will be given
in x 4 a) as in Lutsko (1988) yields

¦(r) = ¡
X

i

mi _ui « _ui ¯ (r ¡ ri)

+ 1

4

X

i

X

j (6= i)

rij « fij ¯ [(r ¡ ri) £ rij ]

¢ fs[(r ¡ ri) ¢ rij ] ¡ s[(ri ¡ r) ¢ rij ]

¡ s[(r ¡ rj) ¢ rij ] + s[(rj ¡ r) ¢ rij ]g; (1.6)

where s(x) is the Heaviside step function. The ¯rst term in this solution is singular at
atomic positions ri and zero elsewhere. The second term is singular at all points along
line segments connecting atomic position pairs as well as at the atomic positions.

We temporarily set aside the issue concerning the exact physical meaning of the
quantity ¦(r) in (1.6) to discuss the evaluation of a continuum average of this
mathematical solution. The discussion here solely focuses on the mechanical force
term in (1.6). Lutsko used a bond length fraction measure in his calculation of an
average of ¦(r) over a certain volume. This bond fraction measure varies from 0
to 1 as one goes from an atom to its neighbour. Details of his calculation can be
seen in eqn (12) of his paper. This handling has been accepted by some as correct.
In particular, it has been used by Cormier et al . (2001). It must be pointed out
that, although Lutsko correctly obtained the mathematical solution in (1.6), his
interpretation of it as mechanical stress and his evaluation of the average through a
line fraction measure are in error.

His error is in his belief that the part of the solution in (1.6) between
atoms is physically relevant to and a®ects balance of momentum. We
must point out that since there is no mass and therefore no momentum
at positions between atoms, balance of momentum is not a® ected by the
part of the mathematical solution in (1.6) that concerns positions between
atoms. The part of (1.6) for positions between any two atoms is irrelevant
to the physics at hand.

It is an artefact of Lutsko’s solution technique (continuum representation for a dis-
crete system) and must be disregarded. Another way to look at this issue is to focus
on the physical reality of the discrete system. The atomic force between two atoms
is only applied on the two atoms at the atomic positions where material mass exists.
The geometric concept of the forces `going through’ the line connecting the atoms
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does not mean forces being applied on spatial locations. Atomic forces cannot be
and are not applied at pure spatial locations where material mass does not exist.
Therefore, stress exists, in a strict sense, only at atomic positions. In physics, quite
often we obtain two solutions (roots) of an equation (such as the case of solving
for velocity from a quadratic equation). Using physical arguments/considerations,
we can determine that one of the solutions (negative, for example) is not physical
and not possible. That solution is a pure mathematical artefact and is disregarded.
The situation here is similar. The part of the solution between atoms has no bearing
on the physics at hand since the system is fundamentally discrete. The interpreta-
tion of Lutsko of his own mathematical solution is incorrect physically. Here, we
must realize that the mathematical solution in (1.6) is only partly relevant to the
physics at hand. Only the part at atomic positions is physically relevant to the dis-
crete atomic system. Physical interpretation of this mathematical solution must use
physical considerations.

Having made clear the above points, it is very important to point out that the state-
ment `(singular) atomic stress/force exists only at atomic positions’ above should be
strictly understood and used in the context of the explicit analysis of discrete atomic
systems. It has nothing to do with the evaluation of a continuum equivalent stress
measure for the atomic system. Speci¯cally, the average stress obtained using a cor-
rect singular atomic solution should be interpreted as a continuous representation
that has value even at positions between atoms. This continuum interpretation of the
singular ¯elds is useful. Also, the equivalent continuum (EC) ¯elds developed in x 5
is a continuous representation of the discrete system and shares certain attributes of
the discrete system in terms of momentum, work rate, energy and mass.

After disregarding the physically irrelevant part of (1.6), we obtain the physically
signi¯cant interpretation of the mathematical solution in (1.6) in the context of
discrete atomic systems as

¦(r) =
X

i

µ
¡ mi _ui « _ui + 1

2

X

j (6= i)

rij « fij

¶
¯ (r ¡ ri): (1.7)

Both terms in this expression for the local virial stress are singular at atomic posi-
tions ri and are zero between atomic positions. A simple average of the singular
stress ¯eld in (1.7) over volume « around a particle i gives ¹¦ in (1.1). Note that the
physically signi¯cant interpretation in (1.7) is exactly the same expression obtained
by Zubarev (1974, eqn (19.12) on p. 246). It is commonly believed that Lutsko’s ver-
sion of the virial stress or s̀tress’ is somewhat di® erent from the version in (1.1).
Analyses above have shown that a correct interpretation of Lutsko’s mathematical
solution yields the same expression for virial stress as used by many other investi-
gators. This is a secondary ¯nding of this paper. We note that some papers in the
literature (see, for example, Cheung & Yip 1991) include an extra factor of 1

2 for the
¯rst term of (1.1). This di®erence is inconsequential for the discussions here. It will
become evident in xx 2{4 that the version of ¹¦ with this extra factor has neither
physical nor geometric signi¯cance. One of the primary objectives of this paper is
to clarify the meaning of (1.1) and distinguish it from the Cauchy stress, since this
expression represents the central point of the `virial stress’ concept.

The virial stress formula in (1.1) has been widely used as a measure for mechanical
stress. In particular, it has been often regarded and used as a form of the Cauchy
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Figure 1. De¯nition of Cauchy stress.

stress. The most important conclusion of this paper is that the virial stress ¹¦ in (1.1)
and its singular form ¦ in (1.7) have a geometric interpretation without any physical
signi¯cance. Speci¯cally, this paper will show that the virial stress measures the rate
of momentum change in space. Contrary to the belief and use of a great majority
of investigators, it does not measure mechanical force or mechanical stress in any
sense. It will be shown that the interatomic force term in (1.1) alone fully and
correctly constitutes the Cauchy stress. In x 3, it will ¯rst be illustrated that the
virial stress formula yields clearly erroneous interpretation of stress in one simple
example. Additional examples illustrating that the virial stress is not mechanical
stress will be given in xx 6 and 7, along with discussions of work conjugacy in the
context of general continuum-molecular system equivalence. The development in this
paper focuses on the correct interpretation of the virial stress and three types of
misconceptions or historic errors in the formulation of the virial stress that led to
its use as a measure for mechanical stress. It will be shown that the inclusion of
the kinetic-energy term resulted from three historic errors in the formulation of the
virial stress. The ¯rst common error is the failure to distinguish between internal and
external forces in intrinsically dynamic systems and the unjusti¯able generalization
of the concept of the external, macroscopic and statistical virial pressure (Clausius
1870; Jeans 1967) to the consideration of the dynamic and local concept of stress
(McLellan 1974; Tsai 1979; Rowlinson & Widom 1982; Swenson 1983; Ziesche et
al . 1988). This conceptual failure overlooks the di®erence and imbalance between
internal and external forces for an intrinsically dynamic system and leads to the
acceptance of the virial stress as a measure for stress which represents internal-force
interaction between material points. The second mistake (see, for example, Cheung
& Yip 1991) is in the assumption that momentum transfer through a non-physical
spatial plane causes a mechanical force to be applied on that spatial plane. This is
a conceptual error that fails to recognize that mechanical force is the interaction
between material mass. The third common error is due to an improper treatment of
or confusion over material and spatial descriptions of balance of momentum. This
error occurred in the theoretical proof ¯rst given by Lutsko and later repeated by
Cormier et al . (2001). A similar error is also made by Yasui et al . (1999) and Nakane
et al . (2000) due to their confusion over material and spatial equations of balance
of momentum (more details are given in x 4). All three errors lead to the inclusion
of the kinetic-energy term in the physically insigni¯cant virial stress formula. It will
be shown that if the virial stress is treated as a measure of mechanical force, the
balance of momentum would be violated.

We note that some authors argue that only the °uctuation part of the atomic
velocity (rather than the total, absolute velocity) should be used in the virial formula.
This version of the virial stress has been put forth by Irving & Kirkwood (1950),
Hardy (1982), Yasui et al . (1999) and Nakane et al . (2000), among others. It will
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Figure 2. Reference and current con¯gurations of a deforming system.

be shown in x 4 c that this version does not represent a measure for stress either.
Discussions using speci¯c examples illustrating the invalidity of this version of the
virial stress as mechanical stress are also given in xx 6 and 7 of this paper.

2. Continuum de¯nition of stress and balance of momentum

(a) De¯nition of Cauchy stress

Since stress is a continuum concept, the evaluation of stress must follow proper
continuum de¯nition of stress and continuum balance laws. To facilitate discussions
on the issue of stress in this paper and to properly understand the meaning of the
virial stress, it is illustrative to ¯rst note that stress is a measure for the internal
mechanical force interaction between material mass points in a body. An illustration of
the de¯nition of the Cauchy stress is given in ¯gure 1. This de¯nition is basic and can
be found in many mechanics texts. In particular, it can be found in Malvern (1969,
p. 69). First, a cut is made through a point P in a body. This is a material cut which
moves with material point P under consideration. The Cauchy stress ¾ measures the
force per unit area between the two sides of the material cut through P. Speci¯cally,
it is de¯ned through t = n ¢ ¾, where n is the unit normal to the cut surface and
t = df=dS is the traction vector on the cut surface at P. Note that the de¯nition
holds for all conditions, fully dynamic as well as static. It is not necessary to know
what the velocity at the point of interest is. This is because, by de¯nition, the cut
always follows mass point P. It is obvious in this de¯nition that stress has nothing to
do with velocity. Another way to look at this issue is through the material description
of balance of momentum. By de¯nition, the Cauchy stress is the components of the
force per unit area between the two sides of the deforming surface of a ¯xed amount
of mass. Therefore, by de¯nition, there is no mass convection through the surface on
which stress is evaluated. This issue is more clearly understood through an analysis
of balance of momentum.

(b) Material and spatial descriptions of balance of momentum

Since one of the historic mistakes in the theoretical development of the virial
stress can be attributed to confusion over the di®erences between spatial (Eulerian)
and material (Lagrangian) representations of balance of momentum, and since the
speci¯c issue concerned is the improper handling of the spatial time derivative and
the material time derivative, we ¯rst brie°y review the material and spatial versions
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of balance of momentum here. Consider a deforming system which has volume V
and surface S at time t, as shown in ¯gure 2. At some reference time t0, the system
has volume V0 and surface S0, which are used as a ¯xed reference con¯guration.
Note that balance of momentum must be satis¯ed by a system as a whole and by any
portion of it. The amount of material mass contained in a volume element V e

0 is ¢m.
Under a general deformation, V e

0 is mapped to a new (the current) con¯guration V e.
Conservation of mass requires that

¢m =
Z

V e
0

» 0(r0) dV =
Z

V e

» (r; t) dV;

where » 0 and » are mass densities in the reference con¯guration and the current con-
¯guration, respectively. At time t, Newton’s second law (balance of linear momen-
tum) speci¯es that for mass ¢m (with body force neglected),

Z

Se

t dS =
d
dt

Z

V e

[ » (r; t) _u(r; t)] dV; (2.1)

where t = n ¢ ¾ is the traction vector on Se, n is the unit normal to Se and ¾ is the
Cauchy stress tensor. Noting that » (r; t) dV = » (r0) dV0 = dm, one can show that

Z

Se

n ¢ ¾ dS =
Z

V e

@

@r
¢ ¾ dV

=
d
dt

Z

V e

[ » (r; t) _u(r; t)] dV

=
d
dt

Z

V e
0

[ » (r0; t0) _u[r(r0); t]] dV0

=
Z

V e
0

f » (r0; t0) �u[r(r0); t]g dV0

=
Z

V e

[ » (r; t) �u(r; t)] dV; (2.2)

where �u(r; t) = d2u(r; t)=dt2 and use has been made of the divergence theorem (¯rst
equal sign) and Reynolds transport theorem (cf. Truesdell & Toupin 1960). Since V e

is totally arbitrary, equation (2.2) corresponds to

@

@r
¢ ¾ = » (r; t) �u(r; t) = _p(r; t) ¡ _» (r; t) _u(r; t); (2.3)

where p = » _u is the momentum density of the continuum in the current con¯gura-
tion. Equations (2.2) and (2.3) are, respectively, the integral and local expressions
of the material description of balance of momentum. They are material in nature,
since the analysis follows a mass particle or a ¯xed amount of mass. They can be
found in any continuum mechanics text, in particular, Malvern (1969). The balance
of angular momentum is maintained through ¾ = ¾T. It is important to note that
the Cauchy stress tensor ¾ represents the physical force per unit area on Se. The
analysis and the material time di®erentiation here must be carried out by following
¢m, with respect to the deforming surface of ¢m, which happens to take the shape
and position of Se at time t. By the same token, the material time di®erentiation

Proc. R. Soc. Lond. A (2003)



Virial stress and continuum-molecular system equivalence 2355

Ve

Se

t = n ×

(a)

Ve

n ×
Se(b)

s

P

Figure 3. Material and spatial descriptions of balance of momentum; the Cauchy stress ¾ mea-
sures the forces on the moving boundary of mass ¢ m, which happens to coincide with Se at
time t, while the v̀irial stress’ is a geometric quantity measuring the momentum ° ow across
a stationary spatial surface Se . (a) Balance of momentum for ¯xed amount of mass occupy-
ing V e at time t, (d=dt)

R
V e

R
» _u dV =

R
S e n ¢ ¾ dS. (b) Time rate of change of momentum for

region V e , (@=@t)
R

V e » _u dV =
R

S e n ¢ ¦ dS =
R

S e f¡[n ¢ _u][» _u] + n ¢ ¾g dS.

in (2.3) is carried out with respect to the material point that happens to occupy
position at r at time t.

The balance of momentum can also be expressed with respect to ¯xed spatial
regions and ¯xed spatial positions, in an Eulerian manner. For the stationary spatial
region V e, the expression is (see, for example, Evans & Morriss 1990)

Z

V e

@

@r
¢ [ ¡ » (r; t) _u(r; t) « _u(r; t) + ¾] dV

=
Z

Se

f¡ [n ¢ _u(r; t)][ » (r; t) _u(r; t)] + n ¢ ¾g dS

=
@

@t

Z

V e

[ » (r; t) _u(r; t)] dV: (2.4)

For ¯xed spatial location r, the expression is (Evans & Morriss 1990; Zubarev
1974)

@

@r
¢ [ ¡ » (r; t) _u(r; t) « _u(r; t) + ¾] =

@

@t
[ » (r; t) _u(r; t)]: (2.5)

Note that Evans & Morriss unequivocally and correctly stated that ¾ in these
equations is the Cauchy stress tensor because it measures the actual mechanical
force per unit area (on mass particles that happen to occupy positions on the surface
of the spatial region under consideration) (also see eqn (2.9) in Evans & Morriss).
Interpretations of (2.2), (2.3) and (2.4), (2.5) are illustrated in parts (a) and (b)
of ¯gure 3, respectively. In the material description, by de¯nition, there is no mass
convection across the surface of ¢m that happens to coincide with Se at time t. The
momentum change for ¢m is purely due to the mechanical forces (

R
Se n ¢ ¾ dS) on

it and the Cauchy stress ¾ provides a measure for the forces through (2.2) or (2.3).
In contrast, the momentum °ow across the stationary spatial surface Se consists
of two parts. The ¯rst part, ¡

R
Se (n ¢ _u)» _u dS, is due to mass convection through

Se. The second part,
R

Se n ¢ ¾ dS, is due to mechanical forces acting upon material
points that happen to occupy positions on the spatial surface Se at time t. Here,
@=@t = d=dt ¡ _r ¢ @=@r represents the time rate of change at a ¯xed spatial location
or in a ¯xed spatial region here. Note that if the material time derivative dp=dt = _p
in (1.3) is interpreted to be the spatial time rate of change @p=@t, equation (1.3)
becomes (1.4), which is exactly (2.5) with ¦ = ¡ » (r; t) _u(r; t) « _u(r; t) + ¾. This
shows that the virial stress ¦ represents the combination of terms in the square
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Figure 4. Lattice in equilibrium and stress-free continuum
translating in space with uniform velocity.

brackets on the left-hand side of (2.5) and is `the tensor that measures the momentum
change in spatial region V e or the momentum °ow across ¯xed spatial surface Se’.
It accounts for the contributions of both mass convection and mechanical force.
Although it is a stress-like quantity (having the dimension of `force per unit area’
and satisfying the spatial version of balance of momentum), it does not in any way
represent the physical interaction between material points through mechanical forces.
Rather, it is strictly a geometric quantity. If it is interpreted or used as a measure
of mechanical stress, as in the literature, violation of balance of momentum occurs.
More discussions on this will be given in subsequent sections. Note also that (1.3)
cannot not be (2.3) in general.

3. Lack of physical interpretation and irrelevance
to material mechanical interaction

We now focus our attention back on the virial stress formula. The mass-transfer
term in (1.1) and (1.7) is irrelevant to the concept of stress. In order to illustrate this
point, we ¯rst consider the simple example of an atomic array at equilibrium and
translating in space with uniform velocity _u0, as shown in ¯gure 4. Assume that all
interatomic distances in this array are greater than the cut-o® radius (the interatomic
distance beyond which direct interaction between two atoms is essentially negligible);
therefore, all interatomic forces vanish. Furthermore, assume that no external forces
are applied on the atoms. Clearly, the continuum equivalent to this system is a body
having the same amount of mass, occupying the same spatial region and moving at
the same uniform velocity (¯gure 4b). Just like particles in the discrete atomic array
in ¯gure 4a, material points in this continuum body are subject to zero forces and
are, therefore, stress free. However, an interpretation using the virial stress in (1.1)
would yield a `compressive stress’ in the direction of motion (regardless of the sign of
_u0) due to the existence of the kinetic term. Speci¯cally, the tensor quantity in (1.1)
for this case is

¹¦ =
1

abc

0

@
¡ m0j _u0j2 0 0

0 0 0
0 0 0

1

A ; (3.1)

where a, b and c and the lattice constants of the atomic array. Obviously, such an
interpretation of stress is inconsistent with reality. If one insists that the kinetic-
energy term be included and that a Gibbs dividing (spatial) plane perpendicular to
_u0 `feels’ a force due to the mass transfer across it, as stated in Tsai (1979), then
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the lattice or its continuum equivalent in return would `feel’ a reaction force of equal
magnitude and opposite direction because of Newton’s third law. As a result, the net
force on material points in the system would not be zero in general and _u0 would not
be constant, in direct contradiction to the original assumption of the problem. To
understand the actual meaning of the quantity in (3.1), we note that the non-zero
component in (3.1),

¹¦ 11 = ¡
·µ

m0

abc

¶
j _u0j

¸
j _u0j; (3.2)

is the momentum carried by the amount of material mass that, during the course of a
unit of time, passes through a unit area of a ¯xed spatial plane that is perpendicular to
the x direction or the direction of particle velocity _u0. In other words, the components
of tensor ¹¦ represent the time rate of momentum °ow per unit spatial area, not
traction or force per unit area of a material body. This interpretation is crucial and
will be con¯rmed to be true in general in x 4 a using considerations of balance of
momentum.

It will be shown in xx 6 and 7 that the virial stress also yields clearly incorrect
interpretations of the stress states for lattices under uniform tension (with or without
thermal °uctuation). The discussions there will involve an account of the stress work
as well as internal loading conditions. Also, those discussions will concern versions of
the `virial stress’ formula that involve both the total particle velocity and only the
°uctuation part of the particle velocity.

The failure of the virial stress to correctly represent the internal material interac-
tion in this example is a direct re°ection of its lack of relevance to mechanical load-
ing in a general sense. We shall examine this issue both in a time-resolved explicitly
dynamic sense and in a statistical time- and space-averaged sense. The following
two sections focus on the conceptual °aw in the formulation of the virial stress by
generalization of the virial theorem (Clausius 1870) for gas pressure and on the mis-
conception held by Lutsko (1988) in the theoretical derivation of the virial stress that
led to him to regard the virial stress as a measure for mechanical force. It must ¯rst
be clearly stated that the virial theorem for gas pressure is totally correct in the sta-
tistical sense (see the following section for details). However, generalizing it to claim
that mechanical stress also depends on mass transfer as well as internal interatomic
force is unjusti¯able and incorrect (see the following section as well). To further illus-
trate the irrelevance of mass transfer to the evaluation of stress, an EC is de¯ned for
dynamically deforming atomistic particle systems in x 5. In that development, the
full ¯elds of momentum- and work-conserving Cauchy stress, surface traction, body
force and mass density for the EC are speci¯ed. The independence of stress on mass
transfer is then demonstrated with full work, momentum, energy and mass equiv-
alence between the EC and the atomic system. Finally, the analytical solution for
the stress ¯eld of the EC of a lattice under uniform tension is given in x 6 to provide
an illustration of the theoretical developments concerning the virial stress and the
continuum/molecular system equivalence. This paper ends with an example in x 7
involving thermal vibrations, further illustrating the irrelevance of the `virial stress’
to mechanical stress both for conditions under which fully time-resolved account of
total atomic velocity is taken and for conditions under which partitioning of thermal
°uctuation velocity and structural deformation velocity is carried out.
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4. Historic errors in the formulation of the virial stress
as a measure of mechanical stress

Although the original formulation of the virial stress in (1.1) is by a generalization
of Clausius’ virial theorem for gas pressure and its derivation using spatial balance
of momentum considerations occurred later, we ¯rst discuss (in x 4 a) the geometric
meaning of the `virial stress’ from the perspectives of spatial and material balance
of momentum. This analysis should also allow us to obtain the correct expression
for the Cauchy stress, which is simply the interatomic force term in (1.1). We will
then discuss the conceptual °aws involved in the generalization of the virial theorem
in x 4 b. This choice of order of discussions is a matter of convenience and facilitates
the discussions.

(a) Measure for momentum ° ow, not measure for mechanical stress

It is not clear in Lutsko (1988) if (1.3) and (1.5) are written in a reference con-
¯guration or in the current deformed con¯guration. As it turns out, regardless of
the choice of frame of analysis, equation (1.3) violates the balance of linear momen-
tum (Newton’s second law of motion), therefore rendering the quantities ¦ and ¹¦
with no clear physical meaning. To facilitate discussions on this issue, we shall exam-
ine (1.3) and (1.5) in the contexts of both the reference con¯guration and the current
con¯guration.

In the current con¯guration, the material description of balance of linear momen-
tum is (2.3) (cf. Malvern 1969). Note that ¾ is the Cauchy stress, » (r; t) is the
mass density in the current con¯guration and p = » _u is the momentum per unit
current volume. Since » �u = _p ¡ _u _» 6= _p in general, equation (1.3) cannot be a true
continuum representation consistent with the balance of momentum in the current
con¯guration (equation (2.3)); therefore, ¦ cannot be identi¯ed with the Cauchy
stress if (1.3) is used. In fact, equation (1.3) is meaningless and does not have any
physical signi¯cance. We believe that Lutsko’s use of the notation d=dt in his paper is
inadvertent. Indeed, his analysis only has meaning if we regard d=dt throughout his
paper as being @=@t. Under this premise, we now analyse Lusko’s solution with (1.4)
as his starting point.

Using (1.4), we can now obtain an interpretation for ¦ or ¹¦ and show that
(a) the virial stress is a measure of momentum change in space, and (b) it is used
as a measure for mechanical force (stress) violation of balance of momentum occurs.
This interpretation can be illustrated in an integral sense involving a ¯nite volume.
For this purpose, we integrate (1.4) or (2.5) over a ¯xed spatial volume element V e

to obtain
Z

V e

@

@r
¢ ¦ dV =

Z

Se

n ¢ ¦ dS =
Z

V e

@p

@t
dV =

@

@t

Z

V e

p dV

=
Z

Se

¡ (n ¢ _u)( » _u) dS +
Z

Se

n ¢ ¾ dS

=
Z

Se

¡ (n ¢ _u)( » _u) dS +
d
dt

Z

V e

» _u dV: (4.1)

Here, use has been made of the divergence theorem. The third equals sign holds
true simply by virtue of the meaning of (@=@t)

R
V e p dV as the rate of change of
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the total momentum contained in spatial region V e and the fact that the spatial
region V e is ¯xed and unchanging. This identity is given in Malvern (1969, p. 211)
as a footnote. To state this identity simply, since the volume of integration is not a
function of time, the total rate of momentum change in ¯xed region V e must be equal
to the sum (integration) of rates of momentum change at all points in the region.R

Se ¡ (n ¢ _u)( » _u) dS is the rate of change of momentum due to mass convection across
Se. (d=dt)

R
V e » _u dV is the material time derivative of the momentum of material

which happens to occupy the spatial region V e at the moment of interest. Since
the material time derivative d=dt follows this constant amount of mass, balance of
momentum requires this term to be equal to the total instantaneous force applied
on the material in V e through Se (body force neglected), i.e.

d
dt

Z

V e

» _u dV =
Z

Se

t dS;

which is (2.1). In contrast, n ¢ ¦ is a `traction-like’ quantity (having the dimension
of force/area) and is ¯xed at the spatial locations of Se at all times. However, it
does not have any physical interpretation as a force. A comparison of ¦ and ¾ is
illustrated in ¯gure 3.

To obtain the Cauchy stress tensor, we start with (2.3) and follow the same proce-
dure of Fourier transform and inverse Fourier transform used in Lutsko (1988). Note
that when (2.3) is applied to an atomic system,

» �u =
X

i

mi �ui ¯ (r ¡ ri);

with mi �ui = fi being the total force on i. Equation (2.3) can be rewritten as

@

@r
¢ ¾(r; t) =

X

i

fi ¯ (r ¡ ri): (4.2)

After Fourier transform, equation (4.2) has the form

ik ¢ ¾̂(k; t) = ¡
X

i

fieik¢ri

= ¡
X

i

X

j ( 6= i)

fijeik¢ri

= ¡ 1

2

X

i

X

j ( 6= i)

(fijeik¢ri + fjieik¢rj )

= ik ¢ 1

2

X

i

X

j (6= i)

rij « fij
eik¢ri ¡ eik ¢rj

ik ¢ rji

; (4.3)

where i =
p

¡ 1, k is the wavenumber, ¾̂(k; t) =
R

V
¾(r; t)eik ¢r dV and use has been

made of the fact that fi =
P

j 6= i fij when external forces do not exist (e.g. the body
is in¯nite). It is important to point out that the derivation and conclusion here also
apply to ¯nite systems with external (body) forces. The result would be the same.
The only di®erence is that the analysis would use an argument similar to that in x 1
concerning the interpretation of (1.6) to show that the body force does not a®ect the
physically signi¯cant part of the stress function solution.
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To carry out the inverse transform of

¾(r; t) =
1

(2º )3

Z

V

¾̂(k; t)e¡ik ¢r dV k

(V k being the transformed space), we use the technique of Cormier et al . (2001) by
noting that

eik ¢ri ¡ eik¢rj

ik ¢ rji
= eik ¢rj

Z 1

0

e(ik¢rji)s ds;

where 0 6 s 6 1 is a scalar variable independent of the relevant quantities. Under
this notation,

¾(r; t) = 1

2

X

i

X

j ( 6= i)

rij « fij

½Z 1

0

·
1

(2º )3

Z

V

eik¢(rjis+ rj ¡r ) dV k

¸
ds

¾

= 1

2

X

i

X

j ( 6= i)

rij « fij

½Z 1

0

¯ [r ¡ (rjis + rj)] ds

¾

= 1

2

X

i

X

j ( 6= i)

rij « fij ¯ [r ¡ (rji` + rj)]; (4.4)

where 0 6 ` 6 1. The third equality re°ects the singular nature of the delta function
and the meaning of the integral on the right-hand side of the second equal sign.
Although written in a slightly di®erent form, the above expression is exactly the
same as the second term in (1.6). In particular, ¯ [r ¡ (rji`+ rj)] is singular along the
line segment between ri and rj and is zero elsewhere. The same physical arguments
associated with (1.6) and (1.7) can be used to show that the physically signi¯cant
interpretation of this mathematical solution in the context of discrete atomic sys-
tems is

¾(r) = 1

2

X

i

X

j ( 6= i)

rij « fij ¯ (r ¡ ri): (4.5)

This singular expression for Cauchy stress can be used to obtain the average stress
over any region of an atomistic ensemble. For a region with volume « around atom i,
the average stress is

¹¾ =
1

2 «

X

i

X

j (6= i)

rij « fij : (4.6)

This stress has all the physical meanings of the average Cauchy stress over « . Recog-
nizing the relationship between stress, deformation and internal strain energy, Huang
(1950) and Born & Huang (1988) used an elastic energy approach to evaluate the
stress in lattices. Their result is identical to that in (4.6), con¯rming the concurrence
that stress is a continuum measure of the internal interactions between material
points and does not depend on the motion of atoms or mass transfer.

It is worthwhile to note that many authors (see, for example, Egami et al . 1980;
Srolovitz et al . 1981a; b; Alber et al . 1992; Horstemeyer & Baskes 1999, among others)
have indeed correctly stated and used (4.6) as the measure for atomic level stress.
Some of these uses may have been out of the belief that at 0 K the kinetic-energy term
in the virial formula vanishes. This paper has shown that their expressions hold, in
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general, at ¯nite temperatures as well. Equation (4.6) is not a special case of (1.1).
Equation (4.6) de¯nes the Cauchy stress in general for fully dynamic conditions
and (1.1) de¯nes a momentum °ux tensor in general for fully dynamic conditions.
Furthermore, equation (1.1) does not de¯ne a mechanical stress in any sense.

Equations (1.1), (4.3), (4.5) and (4.6) show that

¦ = ¡
X

i

mi _ui « _ui ¯ (r ¡ ri) + ¾ and ¹¦ = ¡ 1
«

mi _ui « _ui + ¹¾: (4.7)

Indeed, the ¯rst equation of (4.7) is exactly (19.12) in Zubarev (1974). This quantity
has been widely referred to as `stress’ in the literature; we have shown that it is not
mechanical stress. The combination of terms on the right-hand side does not assign
any physical signi¯cance to ¦ and renders it in violation of Newton’s second law if
it is interpreted as the Cauchy stress. Its signi¯cance is as a tensor that measures
the momentum °ux in space, as can be seen from (2.5) and has been pointed out
in x 2 b. In particular, it is obvious that the components of ¦ are not measures for
mechanical force components in the current con¯guration. Equation (4.1) and the
fact that ¦ is evaluated for ¯xed spatial surface Se characterize the virial stress
as a stress-like quantity that measures the time rate of change of the total momen-
tum contained in spatial region V e. This is strictly a geometric interpretation. In
contrast, the Cauchy stress ¾ measures the material time derivative of momentum
possessed by material mass which happens to occupy spatial region V e with surface
Se at time t. It is explicatory to note that, in discrete particle dynamics where mass
is lumped at mathematical points (or rigid-body dynamics where mass density is
constant at all points and at all times), a direct relation exists between momentum
°ux through an isolated mass point and the total force on that point of mass (not
spatial location), making it possible to evaluate the force directly from momentum
°ux. In deformable body continuum mechanics, however, the continuous convection
of mass or change in mass density due to deformation prevents a direct relation from
being established between force (stress) and momentum °ow over a spatial region
alone. Instead, mass transfer must be accounted for, as indicated by (4.1) as well
as (2.3). This is necessitated by the reality that mass is not conserved, in general,
within ¯xed spatial regions.

As a side note, ¦ can be used to evaluate the momentum °ow across a spatial
surface Se, as pointed out by Lutsko (1988). Speci¯cally, equation (1.4) yields

@

@t

Z

Se

n ¢ p dS =
Z

V e

@

@r
¢
µ

@

@r
¢ ¦

¶
dV:

Again, this is simply a geometric interpretation concerning momentum °ow in space.
It must also be pointed out that the momentum °ow across a spatial surface is not a
measure or indication of any mechanical force. Detailed discussions on this are given
in x 4 b.

Having clari¯ed the true meaning of the virial stress (derived by solving (1.4)) as
a measure for spatial momentum °ow and the fact that it is distinctly di®erent from
the Cauchy stress, we now turn our attention to the question of whether or not (1.3)
can be a valid representation of balance of linear momentum in terms of stress on
a non-deforming reference (Lagrangian) con¯guration. In a reference con¯guration,
the mass density » 0 (mass per unit reference volume) is only a function of initial
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material point location r0 and not a function of time. On such a con¯guration, the
balance of momentum is expressed as (Malvern 1969)

@

@r0
¢ S(r0) = » 0(r0) �u[r(r0; t); t] =

d
dt

p0(r0; t); (4.8)

where S is the non-symmetric ¯rst Piola{Kirchho® stress and p0 is the momentum
possessed by materials contained in unit initial volume at location r0 in the refer-
ence con¯guration. Equation (1.3) bears resemblance to (4.8) in that neither equation
involves a mass-transfer term like that in (2.3). However, for (1.3) to be regarded
as being written on the reference con¯guration and interpreted as (4.8), one must
require that the discussion and calculations in both (1.3) and (1.5) are carried out
consistently on the reference con¯guration. This is clearly not the case, nevertheless.
First of all, the interatomic forces fij depend on rij , the current interatomic dis-
tances. Also, the tensor product in (1.1) and (1.7) and the volume averaging in (1.1)
use dimensions in the current con¯guration. Note also that ¦ is symmetric and, in
general, S is not. Most importantly, atomic position rearrangement during deforma-
tion, in general, makes it impossible to de¯ne a valid (positive-de¯nite) deformation
mapping between the current con¯guration and any ¯xed reference con¯guration.
This di±culty results from a fundamental di®erence between discrete particle models
and continuum models. Speci¯cally, particle rearrangement renders the determinant
of the deformation gradient F to be non-positive (det F 6 0); a situation not per-
mitted in continuum mechanics. Therefore, it is not possible, in general, to de¯ne
stress in the reference con¯guration for a discrete system and (1.3) is not a valid
representation of balance of momentum in a reference con¯guration. Consequently,
¦ cannot be identi¯ed as the ¯rst Piola{Kirchho® stress S either.

In summary, the use of (1.3) for an atomic system is not justi¯ed regardless of
the choice of con¯guration (reference or current). If (1.3) is interpreted as being
written in the current con¯guration, the term _» _u in (2.3) is not correctly accounted
for. As a result, it cannot be used to assign the quantity ¦ (and therefore ¹¦)
any physical meaning. The only possible derivation and interpretation for ¦ (and
¹¦) (as far as Lutsko’s approach is concerned) is through (1.4) and (2.5), giving it

the geometric meaning of a measure for momentum change in space. This spatial
nature of Lutsko’s analysis adds the kinetic-energy term to the virial expression
in (1.7) and (1.1). The inclusion of this kinetic-energy term is inconsistent with
the continuum de¯nition of mechanical (Cauchy) stress and the requirements of
material balance of momentum. Stress is a measure of the internal mechanical force
interactions between material points. Mass transport through geometrical surfaces
in space (Gibbs dividing surfaces) should have no part in any de¯nition of stress,
since it neither contributes to the mechanical interaction between material points
nor induces mechanical interaction between external planes and material particles,
as clearly illustrated by the example in ¯gure 4.

(b) Conceptual ° aws in the generalization of the virial theorem
for gas pressure to stress

This section focuses on the ¯rst and the second conceptual errors in the historic
development of the virial stress referred to in x 1. The virial stress in (1.1) is not a
valid measure for internal material interactions. Further, the components of ¦ are
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not the traction components applied on ¯xed spatial planes that are parallel to coor-
dinate planes and run through the location of interest, contrary to assertions in the
literature (see, for example, Tsai 1979). First, it must be pointed out that there is no
force interaction between material particles and imagined spatial planes. Note also
that the mechanical interactions of atomic particles with each other (internal inter-
actions) and the interactions with external (physical) surfaces occur only through
atomic forces for real materials with mass. The motion of a particle (mass transfer)
does not directly cause mechanical forces to be applied on other particles or surfaces.
Instead, the motion (velocity) has an indirect e®ect on the forces. Speci¯cally, the
higher the velocities of the particles, the closer they may come within each other
or relative to external walls. This is considered `collision’ and this process simply
increases the maximum and mean values of interparticle forces or forces between
particles and external surfaces, since atomic forces depend on interatomic distances.
Other than a®ecting the values of the interatomic forces, this process does not induce
additional forces of any kind. The virial approach or virial theorem (Clausius 1870),
as applied to gas systems in the evaluation of external pressure (not virial stress)
strictly in the statistical average sense over many atoms, correctly captures this
e®ect (an elaboration follows below). The key is that the pressure represents exter-
nal forces between an atomic system and a container. In contrast, stress represents
internal forces between particles inside a body. When individual atomic positions,
particle velocities and atomic forces are explicitly considered, the atomic forces and
the indirect e®ect of particle motion (velocity and position) on atomic forces must
be distinguished. Speci¯cally, a distinction must be made between internal inter-
atomic forces (forces between atomic particles within a system) and external atomic
forces (forces between particles in the system and agents external to the system).
The internal forces give rise to the stresses and the external forces give rise to surface
and body forces for the continuum permeating the spatial region occupied by the
discrete atomic particle system. As an example, for a gas system that is in a statis-
tically `steady’ motion (see, for example, Jeans 1967), the external forces manifest
through the statistical pressure tensor

p =
1

3V

¿X

i

mij _uij2 ¡ 1

2

X

i

X

j (6= i)

rij ¢ fij

À
I

=
1
V

¿
NkT ¡ 1

6

X

i

X

j (6= i)

rij ¢ fij

À
I; (4.9)

where N is the total number of particles in volume V , k is Boltzmann’s constant, T
is temperature, I is the identity tensor and h¢i denotes the average over a su±cient
duration of time. Derived directly from the virial theorem, this relation contains
both a kinetic-energy part and an internal-force part. The second term in the brack-
ets is called the `internal virial’ of a system. Equation (4.9) correctly describes the
macroscopic pressure of a gas system under three conditions.

(i) The system is in steady motion, i.e. the system is in statistical equilibrium and
no pressure waves (disturbances) reverberate in the molecular system (mathe-
matically, this is can be written as h(d2=dt2)(

P
i ri ¢ ri)i = 0 (see, for example,

Jeans 1967).
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(ii) The pressure is to be interpreted in a time-averaged, as well as volume-
averaged, sense, i.e. °uctuations at the molecular level are assumed to average
out over time and space.

(iii) The pressure p must be recognized as the average force per unit area on the
wall of a physical container holding the gas system. It is also the amount of
force applied on the atoms in the gas system by a unit area of the container
wall. In other words, p is only de¯ned as the average external force between
the container and the atomic system.

It is under these conditions that the macroscopic average pressure is de¯ned.
The third condition is especially important, since atomic systems are intrinsically
dynamic. The pressure p, as de¯ned in (4.9), is an e®ective measure for the structural
interaction between the gas system and the external wall. This statistical measure
is calculated through the combination of a kinetic-energy term and an internal-force
term. Apparently, this combination of terms and the similarity of stress to pressure
led Tsai (1979) and Rowlinson & Widom (1982), among others, to conclude that
the atomic stress depends on mass transport as well as on interatomic forces. It is
because of this analogy, and the fact that (4.9) is derived from the virial theorem,
that ¹¦ is called the virial stress. However, this analogy, and, more importantly,
the resulting notion that stress must also consist of a kinetic-energy part and an
internal-force (virial) part at the atomic level when an explicit and time-resolved
account of atomic positions, velocities and interatomic forces is taken, turns out to
be in violation of balance of momentum, as is shown in x 4 a. One of the causes for
this °awed concept is that the de¯nition of the virial stress at the individual atom
level disregards the three fundamental conditions (speci¯ed above) under which (4.9)
holds. These conditions do not hold at the atomic level with which the virial stress
is applied in many contemporary papers. Even though the system as a whole may
be in steady-state, the fully dynamic non-equilibrium conditions at the atomic level
must be recognized. Under such dynamic conditions at the atomic level, the internal
forces between material particles and the external forces from agents outside the
atomic system are not in equilibrium and are not equal. They can even be varied
independently of each other in an instantaneous sense (external forces can be `turned
on’ instantly; however, it takes time to change interatomic distances and interatomic
forces). Consequently, stress, as a measure for internal forces, cannot be conceptually
equated with pressure which is a measure for external forces. It must also be pointed
out that, for an atomic ensemble not in equilibrium, pressure is only de¯ned at the
interface between the system and a physically existing external surface. Without
the physical interaction of atoms and an external wall, external pressure cannot be
de¯ned. In the interior of the system where a physical wall does not exist, the only
quantity that can be de¯ned is the stress tensor and it must be de¯ned in accor-
dance with balance of momentum and conservation of internal work rate. Detailed
discussions on this topic are given in xx 4 a and 5. Because of the intrinsic dynamic
nature of the atomic system, the statistical average of the Cauchy stress (see (4.6)
above) for a gas system (which is sometimes called the internal pressure)

h¾i =
1

6V

¿X

i

X

j (6= i)

rij ¢ fij

À
I (4.10)
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is not equal to ¡ p, as pointed out by Jeans (1967) and contrary to Newton’s belief
(Newton 1999). Equality h¾i = ¡ p exists only when atomic level static equilibrium
occurs, at absolute zero when all atomic motions cease.

Is it possible to view the virial stress in a statistical sense as a measure for mechan-
ical interactions? To rephrase the question, if an average is taken both in space and
time, does the virial stress converge to the Cauchy stress such that the kinetic-
energy term averages out to zero? The question is a reasonable one, since, in many
cases, atomic motions are local and oscillatory around their equilibrium positions.
The answer, however, is negative. Since ¡ mi _ui « _ui = ¡ mi( ¡ _ui) « ( ¡ _ui), this ten-
sor quantity always has three non-positive eigenvalues of ¡ mij _uij2, 0 and 0; with
the negative eigenvalue being associated with the directions of § _ui. Because of this
reason, the time average

¡ hmi _ui « _uii = ¡ 1
3
hmij _uij2iI

for an atom and the statistical average

¡ 1
V

¿X

i

mi _ui « _ui

À
= ¡ 1

3V

¿X

i

mij _uij2
À

I

for the system will always have negative eigenvalues and, therefore, cannot be the
null tensor, except at 0 K when all atomic motions stop. This demonstrates that the
virial stress cannot be a valid measure for stress in the statistical sense either.

Having pointed out the conceptual errors in the generalization of the virial theorem
for pressure to stress, we refocus our attention on the theoretical interpretation of
the virial stress from the perspective of balance of momentum in x 4 a. Put together,
these discussions clarify the exact meaning of the virial stress and have shown why
it cannot be a measure for stress in any sense.

(c) Version of virial stress involving ° uctuation velocity

Equation (1.1) is the most commonly used version of the virial stress. Once the
true nature of (1.1) is understood, it becomes straightforward to explain the meaning
of the version of the virial stress formula involving only the °uctuation part of the
atomic velocities.

Perhaps, in an e®ort to avoid the erroneous interpretation related to the problem
in ¯gure 4 for °uid °ows, Irving & Kirkwood (1950), Evans & Morriss (1990) and
Todd et al . (1995) stated that the stress is (Evans & Morriss (1990) and Todd et al .
(1995) called ¡ ¦ the pressure tensor)

¦ =
X

i

·
¡ mi( _ui ¡ _¹u) « ( _ui ¡ _¹u) ¯ (r ¡ ri) + 1

2

X

j ( 6= i)

rij « Oijfij

¸
; (4.11)

where _¹u is called the `streaming velocity’, whose choice is not clearly de¯ned
(although it can be chosen to be _u0 in ¯gure 4), and

Oijfij = [ ¯ (r ¡ ri) ¡ ¯ (r ¡ rj)]fij

= fij ¡ 1
2!

rij ¢ @

@r
fij + ¢ ¢ ¢ +

1
n!

µ
¡ rij ¢ @

@r

¶n¡1

fij + ¢ ¢ ¢ : (4.12)
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For a reference frame ¯xed in space, this expression has neither physical meaning nor
geometrical meaning. It violates the balance of momentum due to two mathematical
errors in its derivation (Irving & Kirkwood 1950, pp. 822{828; Evans & Morriss 1990,
pp. 67, 68). Each error alone or the combination of both renders (4.11) meaningless.
The ¯rst error relates to the ¯rst term in (4.11). Speci¯cally, the authors neglected
the term

¡ @

@r
¢
X

i

mi( _ui « _¹u + _¹u « _ui) ¯ (r ¡ ri)

in their texts (Irving & Kirkwood 1950, eqn (5.7); Evans & Morriss 1990, eqn (3.116)).
This term is not zero (even if a time average is taken) in general and cannot be and
should not have been dropped from their derivations. If this error is corrected, the
¯rst term in (4.11) will be the same as that in (1.1).

Although it is not at all suggested in these references, we can regard their
analyses as being carried out relative to a frame moving at velocity _¹u.
In such a scenario, the ¯rst term in (4.11) would represent momentum
°ow due to atomic motion relative to this moving frame. This would
assign the velocity °uctuation term a geometric meaning, not a meaning
for a contribution to stress. More discussions on this aspect are given in
association with ¯gures 5, 10 and 11.

The second error concerns the second term, which is incorrect since it is not equal to
the second term in (1.7). This is due to an improper treatment of the delta functions
involved. The particular serial expansion is unnecessary and is not mathematically
de¯ned. However, this aspect is of no consequence to the topic of this paper.

In another attempt to obtain consistency in situations similar to that in the exam-
ple in ¯gure 4, Yasui et al . (1999) and Nakane et al . (2000) stated that

¹¦ =
1
«

X

i

·
¡ mi( _ui ¡ _¹u) « ( _ui ¡ _¹u) + 1

2

X

j (6= i)

(rij « fij)
¸
; (4.13)

where only the °uctuation part ( _ui ¡ _¹u) of the total velocity _ui is used. Just like (1.1),
this expression does not measure mechanical stress in any sense. It has a geometric
meaning as noted below. The derivation of this relation as a mechanical stress mea-
sure is °awed and incorrect because it involves a mixed use of the spatial balance of
momentum (2.5) and the material balance of momentum (2.3). The error is subtle
but signi¯cant. It falls into the third type of the three types of errors outlined in x 1
of this paper. Speci¯cally, note that eqns (14){(22) in Yasui et al. (1999) are based
on a spatial analysis of balance of momentum. To state it di®erently, the integration
in (14) in their paper is over ¯xed spatial volume v and ¯xed spatial surface a (in
the notation used by Yasui et al .). As a result, eqn (18) in that paper is spatial in
nature (the same as (2.5) in this paper, except that (18) in Yasui et al. is written
for a reference frame moving at velocity _¹u). In contrast, eqn (23) in that paper is
material in nature (the same as (2.3) in this paper) because the authors insisted that
the stress in that equation is the Cauchy stress. The authors obtained their result by
equating the spatial equation of balance of momentum to the material equation of
balance of momentum. This is unjusti¯able and incorrect. If the authors correct this
oversight and compare their (18) with the spatial equation of balance of momentum
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Figure 5. Oscillatory motion of a two-atom system.

(equation (2.5) in this paper) written in a reference frame that travels with the local
streaming velocity _¹u, it is then clear that (4.13) de¯nes a quantity that measures the
momentum change relative to a reference frame that travels with the local streaming
velocity _¹u. This is purely a geometric interpretation. It is not surprising, since (1.1)
de¯nes a measure for momentum change in space relative to a frame that is ¯xed in
space. Another way to look at their result is to note the di®erence and the relation-
ship between the Cauchy stress and the `virial stress’ as given in (4.7); their result
will be the same as (4.6) in this paper as far as the Cauchy stress is concerned,
directly con¯rming the conclusion of the current paper.

To illustrate the meaning of (4.13), we consider the harmonic oscillation of a system
consisting of two planes of atoms, as shown in ¯gure 5a. Assume that the motions
of all atoms in each plane are identical and synchronous. It is su±cient to analyse
the simpli¯ed two-atom system as shown in ¯gure 5b whose centre of mass O is
stationary and the two-atom system in ¯gure 5c whose centre of mass O has velocity
_¹u0. In both parts (a) and (b) of ¯gure 5, _uA and _uB denote the ° uctuation velocities
of atom A and atom B relative to the centre of mass O, respectively. We stipulate
that the oscillation is symmetric, so that _uA = ¡ _uB. Here, for simplicity, without
loss of generality, we assume that lattice constants a (in the y direction, ¯gure 5a)
and b (in the z direction, not shown) are both greater than the cut-o® radius of
the interatomic potential. Therefore, the only non-zero interatomic force between
particle A and particle B is dU=dr, with U being the potential function (energy) for
each atom. Equation (4.6) indicates that the Cauchy stresses in parts (b) and (c) of
¯gure 5 are equal. That is, in both cases,

¹¼ 11 =
1
ab

dU

dr
: (4.14)

However, an interpretation using (4.13) shows the virial stress to be

¹¦ 11 =
1

abr

µ
¡ mj _uAj2 + r

dU

dr

¶
=

1
abr

µ
¡ mj _uBj2 + r

dU

dr

¶
; (4.15)

for both parts (b) and (c) of ¯gure 5. This is clearly not the stress in the system.
First, it is not equal to the correct stress interpretation in (4.14). It is important
to point out that the kinetic-energy term in (4.15) will never average out to zero in
time or in space, since it is never positive. Note that an integration of (4.14) over
one cycle of motion yields

Z t + t0

t

¹¼ 11 dt =
1
ab

Z t + t0

t

dU

dr
dt =

1
ab

Z t + t0

t

m �uA dt =
1
ab

m( _uA)jt + t0
t = 0; (4.16)
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where t0 is the time period for the cyclic oscillation. This is expected, since the oscil-
lation is harmonic and no external forces exist. In contrast, an integration of (4.15)
shows that Z t + t0

t

¹¦ 11 dt = ¡ 1
ab

Z t + t0

t

1
r

mj _uAj2 dt < 0: (4.17)

This observation shows that the expression in (4.13) represents neither the instan-
taneous stress in the time-resolved (dynamic) sense nor the average stress in the
statistical sense.

The fact that (4.15) does not de¯ne mechanical stress can also be shown through
a consideration of stress work rate and work conjugacy. Note that the rate-of-
deformation tensor is

D =

0

@
_r=r 0 0
0 0 0
0 0 0

1

A ; (4.18)

giving a strain rate of D11 = _r=r. The stress work for deformation between positions
2r1 and 2r2 (assume that 2r1 is the separation between the particles at an arbitrary
time t1) is

2
Z t2

t1

¹¼ 11D11 dt =
2
ab

Z t2

t1

r
dU

dr

_r
r

dt =
2
ab

Z r2

r1

dU

dr
dr =

2
ab

U(r)jr2
r1

: (4.19)

This is equal to the internal work done by the interatomic force. Apparently, the stress
work over one cycle of motion is 0. This is, again, fully expected and correct. The
vibration of the system in ¯gure 5 is a process of interchange of kinetic and potential
energy. The process is fully conservative and no potential (or kinetic) energy is gained
or lost in one cycle of deformation. In the continuum sense, the elastic deformation
and stress must preserve the conservative nature of the process. The work done by
stress over one cyclic of strain must be zero, as is the case in (4.19). Indeed,

¹¼ 11D11 = _r
µ

1
ab

dU

dr

¶

represents (velocity) £ (force per unit area) for the system and is the mechanical
work rate of the internal force. However, this is not the case for ¹¦ 11 in (4.15), since

¹¦ 11D11 = ¡ 1
ab

_r
r

mj �uAj2

has no meaning whatsoever. Furthermore, ¹¦ 11 is not work conjugate to any other
measure of strain or strain rate. Speci¯cally,

2
Z t2

t1

¹¦ 11D11 dt = ¡ 2
ab

Z t2

t1

_r
r

mj _uAj2 dt 6= 2
ab

U (r)jr2
r1

(4.20)

shows that ¹¦ cannot not be a valid measure for mechanical stress, since it does
not possess work conjugacy required for a valid measure of stress. The fact that, by
coincidence,

2
Z t + t0

t

¹¦ 11D11 dt = ¡ 2
ab

Z t + t0

t

_r
r

mj _uAj2 dt = 0

does not assign any physical signi¯cance to ¹¦ 11!
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On a separate but related note, the virial expression in (1.1) yields

¹¦ 11 =
1

abr

µ
¡ mj _uA + _¹u0j2 ¡ mj ¡ _uA + _¹u0j2 + r

dU

dr

¶
(4.21)

for ¯gure 5c. We note that the quantities in (4.15) and (4.21) have separate geometric
meanings, as shown earlier in this section. The quantity in (4.15) measures the rate of
change of momentum °ow as seen by an observer travelling with the centre of mass O
of the system at velocity _¹u0. The quantity in (4.21) measures the rate of change of
momentum °ow as seen by an observer that remains ¯xed in space at all times. These
quantities are not stress, do not measure force and are not work conjugate to the
rate of deformation (or any other measure of strain rate) as discussed above.

After seeing the incorrect predications for stress given by (1.1) and (4.13) in the
preceding paragraphs and after pointing out the misconceptions in the references
already cited, we note that a formula similar to (4.13) was given by Hardy (1982).
The derivation there is also spatial in nature. Also, in (4.1) of Hardy (1982), a frame
moving with local velocity _¹u(r; t) is used. The tensor quantity he obtained is clearly a
measure of momentum change relative to that coordinate system, and, consequently,
the same as that in (4.13). It is not a measure for mechanical stress in any sense.

The geometric meaning of (4.13) and its irrelevance to mechanical stress are further
illustrated by the examples in ¯gure 10 of x 6 and ¯gure 11 of x 7. Note that there is
no system level average velocity due to symmetry in those examples, and therefore
_¹u = 0. The result is the same regardless of whether one uses (1.1) or (4.13). These
expressions yield a `stress tensor’ that increases with coordinates x and y in ¯gure 10.
This is apparently not consistent with the fact that the deformation is uniform
throughout and strain and therefore stress must be uniform.

5. Work conjugacy and EC

It is worthwhile to point out that the singular Cauchy stress and average Cauchy
stress in (4.5) and (4.6) have not been associated with a work-conjugate contin-
uum deformation ¯eld in general (for arbitrary conditions of deformation) to allow
the internal and external mechanical work rates of the system to be evaluated. To
overcome the lack of work conjugacy, to provide a systematic approach toward the
continuum analysis of discrete molecular systems and to further demonstrate the
irrelevance of the mass-transfer terms in (1.1) and (1.7) to stress evaluation, we intro-
duce the concept of the EC for dynamically deforming atomic particle systems. This
framework of analysis is based on a systematic delineation of the internal and external
atomic forces. The objective is not only to evaluate work-conjugate continuum stress
and deformation ¯elds, but also to specify all other work- and momentum-preserving
kinetic quantities (external traction and external body force) and mass distribution
for the EC. The continuum is equivalent to its corresponding discrete atomic parti-
cle system in that, at all times, it preserves the linear and angular momenta of the
particle system, it conserves the internal and external mechanical work rates and it
has an equal amount of kinetic energy and contains the same amount of mass as
the particle system. The momentum and work equivalence is achieved by virtue of
the principle of virtual work for fully dynamic conditions. This equivalence should
hold for the entire system and for volume elements de¯ned by any subset of particles
in the system, therefore averaging and characterization across di®erent length-scales
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Figure 6. Particle system and EC.

are possible and size-scale e®ects can be explicitly analysed. The discussion below
concerns central-force atomic particle systems. A more general discussion in the con-
text of micropolar systems with both interatomic forces and interatomic moments is
given in Zhou & McDowell (2002).

It is important to point out that, usually in higher-scale continuum theories, kinetic
energy is only associated with the `macroscopic’ deformation or motion that can be
explicitly resolved at the size- and time-scales of an analysis. The part of the atomic
motion at high frequencies that cannot be resolved at a certain practical level is con-
sidered heat or thermal energy and is accounted for phenomenologically. Ultimately,
in the context of multiscale modelling and characterization of material behaviour
`from the ground up’ (from ab initial, ¯rst principle, MD to micro, meso and macro-
scopic continuum models), the thermal part and the structural dynamic part of the
atomic kinetic energy must be delineated as one approaches higher length-scales.
The EC theory developed here is a nanoscale mechanical theory. Just like in the
MD model, the EC represents, the kinetic energy of the EC developed here includes
both the `thermal’ part and the `structural’ dynamic part. In this sense, the EC is a
fully faithful continuum form representation of the MD model. By faithful here, we
mean time-resolved explicit equivalence in all work rates, kinetic energy, mass and
deformation ¯elds. Just like MD models explicitly track the absolute particle motion
and the total kinetic energy, the EC model here does the same by explicitly following
the motion of the particles in a fully time-resolved manner. The EC development can
be, and, perhaps, should be, regarded as the `continuumization’ of discrete models,
which o®ers a high degree of ¯delity to the discrete description. Following this initial
step, further development could involve scaling in time and space. One important
element of that process should be the delineation of thermal energy in the form of
atomic vibrations and kinetic energy associated with structural deformation. This
partitioning is inherently scale dependent and should be the topic of future research.

(a) Continuum-particle system equivalence

Consider a dynamically deforming system of N particles that occupies space V
and has an envelope of surface S as illustrated in ¯gure 6. At time t, particle i has
position ri, displacement ui and velocity _ri = _ui. The force on particle i due to

Proc. R. Soc. Lond. A (2003)



Virial stress and continuum-molecular system equivalence 2371

atoms or agents that are external to the system under consideration is f 0
i . The total

force on i is
fi =

X

j

fij + f 0
i = f in t

i + f ext
0 : (5.1)

Here, the summation is over those particles inside the system of N particles that
interact directly with particle i. It is worthwhile to point out that due to non-local
interactions external force can exist for particles both in the interior of V and on
the surface S. Note that the concepts of internal and external forces are speci¯c
to the particular sub-volume V e of V considered. So, in general, f in t

0 6=
P

j fij and
f ext

0 6= f 0
0 , except for V e = V . For example, for the volume element V e illustrated in

¯gure 6, the forces between atoms 1 and 2 (f12, f21), as well as those between atoms 3
and 4 (f34, f43), are internal; while the forces between atoms 5 and 6 (f56, f65) and
those between atoms 7 and 8 (f78, f87) are external. Note that all of these forces are
internal when the system is considered as a whole.

The continuum equivalent to the particle ensemble has volume V and surface S .
A material point in the continuum initially at x0 has position x (or r) in the cur-
rent con¯guration, so that the displacement and velocity functions are, respectively,
u = x ¡ x0 and _x = _u. The stress tensor ¾ is related to the surface traction t
through t = n ¢ ¾, where n is the outward unit normal to any internal surface Se or
surface envelope of the body S. Body forces can result from non-local e®ects of atoms
or agents external to the system under consideration. Let b denote the densities of
the continuum body forces in V . In the following analyses, all kinetic and kinematic
quantities are evaluated on the current deformed con¯guration. Also, the continuum
has mass density » (x) in the current con¯guration. The continuum we seek to occupy
V should be dynamically equivalent to the particle system. This requires that, at all
times, (i) the stress ¯eld over the continuum de¯ned by a discrete particle ensemble
has the same work rate as the internal interatomic force ¯eld, (ii) the body-force and
surface-traction ¯elds produce the same external work rate as that of the external
interatomic force ¯elds, and (iii) the kinetic energy of the continuum be the same as
that of the discrete atomic ensemble. The ¯rst requirement ensures that the contri-
bution of the continuum stress ¯eld to the motion and deformation of continuum (or
the particle system) is the same as that of the original inter-particle force ¯eld. The
second requirement ensures that the continuum external force ¯eld provides the same
input to the motion and deformation of the continuum (or the particle system) as
the discrete particle forces due to external atoms and agents. The third requirement
ensures that the contributions of material inertia to motion and deformation are the
same for the EC and the particle system. These separate requirements for the inter-
nal and external work rates and kinetic energy can be satis¯ed through the dynamic
principle of virtual work, allowing de¯nition of work-preserving ¯elds of continuum
stress (¾), work-preserving continuum surface traction and body force (t and b) and
continuum mass density » (x).

For the entire ensemble with N particles, the above requirements can be written
in terms of the dynamic principle of virtual work, i.e.

¡
Z

V

¾ : ¯ D dV +
Z

V

b ¢ ¯ _u dV +
Z

S

t ¢ ¯ _u dS

=
NX

i= 1

fi ¢ ¯ _ui =
Z

V

» �u ¢ ¯ _u dV =
NX

i= 1

mi �ui ¢ ¯ _ui; (5.2)
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where the symbol ¯ in ¯ D, ¯ _u and ¯ _ri denotes any kinematically admissible func-
tional representations of the corresponding quantities. Superimposed double dots
represent second-order material time derivative, i.e. �u = d2u=dt2; D is the symmet-
ric continuum rate of deformation and ¾ : ¯ D = ¼ ¬ ­ ¯ D­ ¬ ( ¬ ; ­ = 1; 2; 3, summation
over repeated indices ¬ and ­ is implied).

Note that balance of momentum must be satis¯ed by a system as a whole and by
any portion of the system. Internal and external forces are fundamentally di®erent.
If two systems are to be equivalent and balance of momentum is to be satis¯ed at
any size scale, their internal-force work rate, external-force work rate and inertial
work rate must be equivalent.

To develop a scalable representation of the EC, consider a sub-volume element
V e » V with closed surface Se associated with a subset of M (less than or equal to
N ) particles in the ensemble. Assume that MS out of the M particles (MS 6 M ) are
on surface Se, therefore de¯ning it. The remaining M ¡ MS particles are in the interior
of V e and are considered as internal particles for V e. To de¯ne the momentum- and
work-conserving stress ¾(e), surface traction t(e), body force b(e) and mass density
» (e)(x) over V e, the variational principle of is applied to this portion of the system,
yielding

¡
Z

V e

¾(e) : ¯ D(e) dV +
Z

V e

b(e) ¢ ¯ _u(e) dV +
Z

Se

t(e) ¢ ¯ _u(e) dS

=
MX

I = 1

f in t
I ¢ ¯ _uI +

MX

I = 1

f ext
I ¢ ¯ _uI =

Z

V e

» (e) �u(e) ¢ ¯ _u(e) dV =
MX

I = 1

&ImI �rI ¢ ¯ _uI :

(5.3)

Here, a capital subscript `I ’ denotes particle index internal to the volume element
V e (1 6 I 6 M ). Each atom inside V e is given two indices, one is the local index I
(1 6 I 6 M ) and the other is its global index i (1 6 i 6 N), as the atom is also part
of the complete system V . Since a unique correspondence between I and its global
counterpart i can be established, we use them interchangeably here for convenience
of discussion. Under this notation, `j 6= I ’ and `j = I’ should be interpreted, respec-
tively, as `j 6= i’ and `j = i’. For example, `j = I ’ should be read as `the particle with
global index j and the particle with local index I (and therefore global index i) are
the same particle’.

This notation is used here to delineate the total force f in t
I on atom I in V e exerted

by other atoms also inside V e (either in the interior of V e or on surface Se) and
the force f ext

I exerted by atoms or agents outside V e. A distinction must be made
between these internal and external interactions. Note that the total force on I is
fI = f in t

I + f ext
I , and

f in t
I =

MX

J 6= I

² IJ fIJ ; f ext
I =

NX

j (J 6= 1;2;:::M)

fIj + f0
I : (5.4)

Here, ² IJ is the fraction of the atomic bond that is spatially within element V e. It
pertains to the bond between atoms I and J that are both inside V e. In general,
when atoms are randomly distributed (as in amorphous materials), ² IJ is deter-
mined by the dihedral angle of the element as a fraction of the sum of such angles
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(less than or equal to 360¯) of all elements associated with the particular bond.
Speci¯cally, ² e

IJ = ¿ e
IJ=

Pk
e ¿ e

IJ , with ¿ e
IJ being the dihedral angle in element (e)

associated with the bond between atoms I and J , and k being the number of ele-
ments connected to the bond. Consider, for example, the BCC lattice in ¯gure 7.
The bond between atoms 1 and 3 is shared by four tetrahedral cells (each of the
four tetrahedral cells is considered a volume element V e with M = 4). Therefore,
for the tetrahedral element de¯ned by atoms 1, 2, 3 and 4 (and for each of the other
three cells) ² = 90¯=360¯ = 0:25 for this bond. For bonds on surface Se (both atoms
of the bond are on Se), the sum of such angles is less than 360¯. &I in (5.3) is the
fraction of atom I that is attributed to element V e. For example, atom 1 in ¯gure 7
is shared by 24 tetrahedral elements, therefore, & = 1

24 for each element. For periodic
and amorphous structures alike, & can be de¯ned through &e

I = ’e=
Pk

e ’e, with ’e

being the solid angle (three dimensions) or angle (two dimensions) subtended by an
element and k being the number of elements connected to an atom.

The continuum quantities ¾(e), t(e), b(e), _u(e), D(e) and » (e) in (5.3) are associated
with element V e. The use of V e < V has two clear bene¯ts. One is that it allows
size e®ects to be analysed. The other is that the analysis with a smaller V e is more
computationally e±cient, and simpler shape functions can be used.

With the above notation, the requirements that the virtual work rates of internal,
external and inertial forces are equal can then be written as

¡
Z

V e

¾(e) : ¯ D(e) dV =
MX

I = 1

f in t
I ¢ ¯ _uI ;

Z

Se

t(e) ¢ ¯ _u(e) dS =
MSX

I = 1

(1 ¡ µI)f ext
I ¢ ¯ _uI ;

Z

V e

b(e) ¢ ¯ _u(e) dV =
MX

I = 1

µIf ext
I ¢ ¯ _uI ;

Z

V e

» (e) �u(e) ¢ ¯ _u(e) dV =
MX

I = 1

&ImI �uI ¢ ¯ _uI :

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

(5.5)

The breakup of (5.3) into the above component equations or the requirement of strict
term-to-term satisfaction of (5.3) fully re°ects the dynamics of the system. It ensures
the satisfaction of balance of momentum and full dynamic equivalence between the
EC and the particle system at any size scale. The associations of internal forces to
internal stress only and external forces to body force and surface traction only are
strictly required by balance of momentum and conservation of energy. Otherwise, if
one allows internal forces to generate external traction and/or body forces, a system
(or part of a system) would accelerate and gain momentum and energy by the e® ect
of its internal forces alone. This would violate balance of momentum and balance of
energy. Similarly, if a part of the external forces is used to generate internal stress
but not external traction (or body force), part of the momentum and work from the
external forces would vanish, again causing violation of balance of momentum and
balance of energy.

The ¯rst relation pertains to stress. The second relation concerns the surface trac-
tion. The corresponding summation is over only the Ms particles on surface Se.
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Figure 7. Atomic bonds shared by neighbouring cells.

The third relation concerns the body force due to external forces. External forces
on atoms in the interior of V e contribute only to the body-force density b(e), and
therefore factor µI is always taken as unity (µI = 1) for atoms in the interior of
V e. The external forces exerted on atoms on surface Se are considered to contribute
solely to surface traction t(e), and therefore µI = 0 for atoms on Se. This partition is
somewhat arbitrary and, indeed, any choice 0 6 µI 6 1 for surface atoms (along with
µI = 1 for interior atoms) will allow external work rate to be preserved. However,
the choice of µI = 0 for surface atoms (along with µI = 1 for interior atoms) has
the clear advantage of yielding zero body-force density as non-local external forces
become zero. This outcome is consistent with local continuum theories.

The above delineation of external forces and moments is related to non-local inter-
atomic interactions and is important for the de¯nition of ¾(e), b(e) and t(e). It allows
the length-scale dependence of nanoscale atomic behaviour due to non-local inter-
atomic interactions to be quanti¯ed as the size of V e (and therefore the number of
atoms M contained) is increased or decreased.

(b) Stress ¯eld

We ¯rst focus the discussion on internal work rate and the ¯rst equation of (5.5)
for stress. To evaluate the continuum version of the virtual work, an interpolation
for the virtual velocity of atoms in V e is needed. Many possible methods for the
interpolation are available. One uses the shape functions of ¯nite elements, i.e.

¯ _u(e)(x) =
MX

I = 1

NI(x) ¯ _uI ; (5.6)

where NI(x) are the shape functions and should be interpreted as N
(e)
I (x). The

superscript `(e)’ is omitted for brevity. Details regarding these shape functions can be
found in ¯nite-element method texts. The corresponding virtual velocity gradient is

@¯ _u(e)

@x
=

MX

I = 1

¯ _uI « @NI

@x
=

MX

I = 1

¯ _uI « BI : (5.7)
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Here, BI = @NI(x)=@x are gradients of the shape functions and « denotes the
tensor product of two vectors. The virtual rate of deformation is

¯ D(e) =
1
2

·
@¯ _u(e)

@x
+

µ
@¯ _u(e)

@x

¶T¸
= 1

2

MX

I = 1

( ¯ _uI « BI + BI « ¯ _uI): (5.8)

The virtual work of the stress tensor with respect to the virtual rate of deformation
is given by

Z

V e

¾(e) : ¯ D(e) dV =
Z

V e

¾(e) :
MX

I = 1

(BI « ¯ _uI) dV =
MX

I = 1

Z

V e

(¾(e) ¢ BI) ¢ ¯ _uI dV:

(5.9)
Since ¯ _uI are completely arbitrary and independent degrees of freedom, (5.5)1

and (5.9) lead to Z

V e

¾(e) ¢ BI dV = ¡ f in t
I : (5.10)

Since f in t
I are internal forces, Newton’s third law implies that

MX

I = 1

f in t
I = 0 and

MX

I = 1

rI £ f in t
I = 0: (5.11)

Note that one of the basic requirements for shape functions is
PM

I = 1 NI = 1, and
therefore

PM
I = 1 BI = 0. In general, for an element V e with M atoms, equation (5.10)

yields 3M ¡ 6 independent equations. Since the number of independent components
in ¾(e) is six, the problem of ¯nding a constant spatially non-varying average ¾(e) is
overspeci¯ed for any choice of M greater than four. Consequently, it is impossible to
¯nd a constant spatially non-varying average work-equivalent stress over the volume
associated with an arbitrary subset of the particle ensemble. It important to point
out that this is not to say that work-conjugate stress ¯eld cannot be found on an
arbitrary size scale in general. Of course, properly formulated spatially varying ¾(e)

can always be found for an element at any scale. More discussions on this follow in
the next paragraph. Because of this reason, the average stress in (4.6) cannot be,
in general, associated with a work-conjugate deformation ¯eld. Although it may be
desirable to do so, such a task is not possible because of the disparate number of
degrees of freedom (DoF) for the discrete particle subset and the ¯xed dimensional
order of the stress tensor. Parity in the DoF and the order of the stress tensor
occurs (six equations and six unknown stress components) only for the simplest
three-dimensional cell, the tetrahedron which is associated with four particles. In two
dimensions, triangles associated with three atoms are the only possible choice (three
equations and three independent unknown stress components). This particular level
of continuum characterization is very useful because it fully recognizes the e®ects
of heterogeneities and steep gradients at the scale of individual atoms. This process
of establishing dynamical equivalence between the continuum and MD formulations,
although performed at interatomic scales, is also very important because it yields
the lowest-scale continuum ¯elds that may be subsequently subjected to various
treatments of continuum averaging, including those of statistical mechanics.

It is important to point out that for M > 4 in three dimensions and M > 3 in
two dimensions, equation (5.10) requires, in general, spatially varying stress ¯elds
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Figure 8. Superposition of stress sub¯elds in overlapping elements.
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Figure 9. Size scale of element overlapping. (a) Volume overlap. (b) Surface overlap.

with proper choice of integration points in V e for the relevant numbers of unknowns.
Although somewhat more computationally involved, such a pursuit would be quite
useful and important since it permits scaling and allows size e®ects to be quanti¯ed
through the variation of the size of V e.

Di®erent volume elements V e chosen for stress calculation occupy di®erent spatial
regions. In general, due to multiple and non-local atomic interactions, these elements
partly overlap. A two-dimensional illustration of this issue is given in ¯gures 8 and 9.
In ¯gure 8, assume the cut-o® radius for the material is Rc. For atom A, interactions
with eight other atoms must be considered. Speci¯cally, forces on A due to atoms B,
C and D give rise to elements ABC and ACD among other elements (note that only
a portion of the forces may be considered in each triangle, as indicated in (5.4)). For
atom D, a similar cut-o® circle must be drawn and triangles DAB and DBC must be
analysed among others. Since these four elements partly overlap and do not coincide,
the superposition of the stress sub¯elds varies for each spatial location in V . This
issue necessitates proper superposition of these elemental quantities to obtain the
total ¯elds for ¾, t, b, _u, D and » , since the summation for the virtual work in (5.2)
must be performed over all interatomic bonds (i = 1; 2; : : : ; N ) on the discrete side
and over all elements on the continuum side to ensure equality of virtual work. To
state it simply, the need for superposition of elemental ¯elds to obtain system-level
¯elds is due to a combination of two factors. The ¯rst factor is that overlap of
elements occurs because of the non-local nature of atomic interactions. The second
factor is the requirement that, at the system level, the continuum ¯elds yield the
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same momentum, work rates and mass as the discrete ¯elds. The elemental stress
¾(e)(x) contributions at a position x combine to give rise to ¾(x) as

¾(x) =
X

e

¾(e)(x); (5.12)

where the superposition is carried out for each x with all elements that contain that
point.

The rate-of-deformation work-conjugate to the stress ¯eld in (5.12) is

D­ ¬ =

P
e ¼ (e)

¬ ­ D(e)
­ ¬P

e ¼
(e)
¬ ­

; (5.13)

where summation is not implied over repeated indices ¬ and ­ . Note, however, that
in the limit in which V e = V , there is only one element and ¾(e)(x) = ¾(x) and
(@ _u=@x)(e) = @ _u=@x; therefore no superposition is needed.

The detection of overlap is primarily a computational issue. It could be quite
complicated, in terms of a systematic algorithm. The easiest way to approach this
issue is to (a) formulate all elements in a computational implementation and calculate
all elemental ¯elds, (b) construct a uniform spatial grid that is ¯ne enough for the
problem at hand, and (c) calculate the stress at each point by checking how many
elements actually contain that location and therefore contributing stress to it.

(c) Traction and body force

An illustration of surface overlap is given in ¯gure 9b. To obtain the traction over
the surface area Se of V e, consider a surface element ¢S » Se de¯ned by L particles.
The virtual velocity over ¢S is

¯ _u(e)(x) =
LX

I = 1

NI(x) ¯ _uI : (5.14)

Substitution into the second equation of (5.5) yields

LX

I = 1

Z

¢ S

NI(x)t(e)(x) dS ¢ ¯ _uI =
LX

I = 1

¹ I(1 ¡ µI)f ext
I ¢ ¯ _uI ; (5.15)

where ¹ I is the fraction of (1 ¡ µI)f ext
I that can be attributed to ¢S, since ¢S may

be only a portion of Se and particle I may be on the boundary of ¢S (shared by
the rest of Se). ¹ I can be de¯ned through ¹ i

I = (¢S)i
I=

Pk
i (¢S)i

I , with k being the
number of surface areas connected to atom I. Again, the arbitrariness of ¯ _uI requires
that Z

¢ S

NI(x)t(e)(x) dS = ¹ I(1 ¡ µI)f ext
I ; (5.16)

with I = 1; 2; : : : ; L. The solution to the above is

t(e)(x) =
LX

J = 1

NJ (x)¸J ; (5.17)
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where ¸J are vector solutions of the linear system of equations in the form
LX

J = 1

cIJ¸J = ¹ I(1 ¡ µI)f ext
I : (5.18)

In the above equations, cIJ =
R

¢ S
NI(x)NJ (x) dS , with I; J = 1; 2; : : : ; L. The sim-

plest case is that of triangular surface areas with L = 3.
If ¢S resides on the surfaces of two or more elements, the total traction is

t(x) =
X

e

t(e): (5.19)

The equations for the body-force density b resulting from the third equation in (5.5)
are

b(e)(x) =
MX

J = 1

NJ (x)ºJ ; (5.20)

where ºJ are the vector solutions of the linear system of equations in the form of
MX

J = 1

dIJºJ = µIf ext
I : (5.21)

In the above relations, dIJ =
R

V e NI(x)NJ (x) dV , with I; J = 1; 2; : : : ; M , µI = 1
for atoms in the interior of V e and µI = 0 for particles on the surface Se of V e.

The elemental body-force contributions obtained above combine to yield the total
body-force density as

b(x) =
X

e

b(e)(x): (5.22)

The velocity ¯eld work-conjugate to this is

_u¬ =
P

e b
(e)
¬ _u(e)

¬
P

e b
(e)
¬

; (5.23)

where summation is not implied over repeated index ¬ . It must be pointed out that
if no body force exists, the total velocity is simply the average of the elemental
velocities involved. This will allow the null work rate of the null body-force ¯eld to
be preserved.

(d) Mass distribution

The equality of the continuum virtual work and atomic virtual work associated
with inertia forces in the last equation of (5.5) speci¯es the distribution of mass of
the EC. We can express these elemental densities in terms of the shape functions as

» (e)(x) =
MX

K = 1

NK (x)gK ; (5.24)

where gK (K = 1; 2; : : : ; M ) are solutions of
MX

K = 1

gK ÂIK = &ImI �uI ; (5.25)
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with

ÂIK =
Z

V e

NI(x)NK(x) �ue dV and �ue =
MX

I = 1

NI(x) �uI :

Note that the requirement of conservation of mass must be satis¯ed by (5.24)
and (5.25). The solution for (5.24) must be carefully constructed.

Accounting for contributions from overlapping elements at a location x, the total
mass density is

» (x) =
X

e

» (e)(x): (5.26)

The acceleration ¯eld that is work conjugate to this mass distribution and the velocity
¯eld in (5.23) is

�u ¬ =
P

e » (e) �u(e)
¬ _u(e)

¬

_u ¬ (x) » (x)
; (5.27)

where summation is not implied over repeated index ¬ .
We note that, in general, for areas where overlap of elements occurs, the deforma-

tion ¯eld quantities from (5.13), (5.23) and (5.27) do not satisfy D = sym @ _u=@x,
even though at the element level D(e) = sym @ _u(e)=@x is indeed satis¯ed. This sit-
uation results from the weighted averaging used to maintain the work conjugacy of
the stress, body force and surface traction. The lack of full consistency with the
continuum di®erential requirement occurs only on the size scale of the cut-o® radius
of the material. Such overlap a®ects only the boundary region of V e inside Se that
has a thickness smaller than or equal to Rc (see ¯gure 9 for the size of overlapping
zone between elements V 1 and V 2). Locations in the interior of V e that have dis-
tances from Se greater than Rc are not a®ected by the overlap. As the size of V e is
increased, the e®ect of this lack of di®erential smoothness decreases. Full consistency
is achieved in the limit of V e = V . Full consistency is also maintained when elemental
stresses ¾(e) and body-force densities b(e) are the same in overlapping elements. It
is worthwhile to point out that the use of such superimposed deformation quantities
can also be avoided completely by always placing the locations of interest fully in the
non-overlapping interior of an element. It will be shown in x 5 e that the bene¯t of
this weighted averaging is that the conservation of internal and external work rates,
conservation of linear and angular momenta and conservation of mass are achieved
between the EC and the discrete particle system.

(e) Work conjugacy and balance of momenta

To demonstrate the global equivalence of work rates, we replace ¯ _u in (5.2)
and (5.5) by the actual velocity _u. These equations then become, respectively,

¡
Z

V

¾ : D dV +
Z

V

b ¢ _u dV +
Z

S

t ¢ _u dS

=
NX

i= 1

fi ¢ _ui =
Z

V

» �u ¢ _u dV =
NX

i= 1

mi �ui ¢ _ui; (5.28)

¡
Z

V

¾ : D dV =
NX

i= 1

f in t
i ¢ _ui (5.29)
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and
Z

V

b ¢ _u dV +
Z

S

t ¢ _u dS =
NX

i= 1

f ext
i ¢ _ui: (5.30)

These relations show that the EC indeed has the same internal, external and inertial
work rates as the discrete particle system.

The EC also has the same global linear and angular momenta as the original
particle system. It can be shown that (5.19), (5.22) and (5.26) satisfy

Z

S

t dS +
Z

V

b dV =
NX

i= 1

f ext
i =

NX

i= 1

fi =
Z

V

» �u dV =
NX

i = 1

mi �ui;

Z

S

r £ t dS +
Z

V

r £ b dV =
NX

i= 1

ri £ f ext
i =

NX

i= 1

ri £ fi

=
Z

V

» r £ �u dV =
NX

i= 1

miri £ �ui:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(5.31)

Therefore, using the dynamic principle of virtual work, we have de¯ned an EC that is
dynamically consistent with atomic ensembles in MD idealizations. The consistency
is in the conservation of internal work rate, external work rate and work rate due
to inertial forces. The ¯elds of work-conserving stress, surface traction, body-force
density and mass density are determined along with a work-conjugate deformation
¯eld. The continuum-particle assembly work equality and momentum equivalency
ensures that the continuum interpretation of the discrete force ¯eld maintains the
physical e®ects of the particle system at all times. It is important to point out that
the continuum ¯elds de¯ned here re°ect an interpretation of the particle force and
deformation over the entire spatial region and surface occupied by the particle sys-
tem. The advantage is that regular continuum averaging, scaling and interpretation
are fully allowed. Furthermore, the equivalence of work rates, kinetic energy, linear
momentum and angular momentum holds for any ¯nite volume element V e, as well
as for the entire system. The formulation, algorithm and results allow a consistent
transition from the MD framework to the continuum framework. The length-scale
e®ects due to non-local interatomic interactions can be accounted for in this frame-
work of analysis. Since full ¯elds of all fundamental kinetic and kinematic quantities
are given, scaling and averaging can be carried out.

6. Example: uniform tension of a rectangular lattice

In order to illustrate the work conjugacy of the Cauchy stress in (4.6) and (5.10)
and to further illustrate the irrelevance of mass transfer to stress, we consider the
uniform tension under external forces f 0

x and f 0
y of a lattice in ¯gure 10. Because of

symmetry, only the ¯rst quadrant of the system is shown. The initial lattice constants
are a0 and b0. The deformed lattice has dimensions a and b in the horizontal and
vertical directions, respectively. The material is homogeneous and the mass of each
atom is m. For simplicity, assume the cut-o® radius Rc is such that a < Rc < 2a and
b < Rc < 2b, and therefore non-local interactions do not occur. The calculation for
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Figure 10. Uniform tension of a two-dimensional lattice and continuum equivalent.

Table 1. EC stress and deformation ¯elds for a lattice in uniform tension

element stress and rate-of-deformation ¯elds

1-2-3 ¾(e) =

µ
( 1

2 f32 + f13 sin £ )=b ¡f13 sin £ =a

¡f13 sin £ =a ( 1
2 f12 + f13 cos £ )=a

¶
, D(e) =

µ
_a=a 0

0 _b=b

¶

1-3-4 ¾(e) =

µ
( 1

2 f32 + f13 sin £ )=b ¡f13 sin £ =a

¡f13 sin £ =a ( 1
2 f12 + f13 cos £ )=a

¶
, D(e) =

µ
_a=a 0

0 _b=b

¶

1-2-4 ¾(e) =

µ
( 1

2 f32 + f13 sin £ )=b ¡f13 sin £ =a

¡f13 sin £ =a ( 1
2 f12 + f13 cos £ )=a

¶
, D(e) =

µ
_a=a 0

0 _b=b

¶

2-3-4 ¾(e) =

µ
( 1

2 f32 + f13 sin £ )=b ¡f13 sin £ =a

¡f13 sin £ =a ( 1
2 f12 + f13 cos £ )=a

¶
, D(e) =

µ
_a=a 0

0 _b=b

¶

overall ¾ =

µ
(f32 + 2f13 sin £ )=b 0

0 (f12 + 2f13 cos £ )=a

¶
, D =

µ
_a=a 0

0 _b=b

¶

stress work rate ¾ : D = (1=ab)(f32 _a + f12
_b + 2f13 _r)

the EC here uses two-dimensional linear shape functions. Results of the continuum
interpretation of the interatomic potential solutions are listed in table 1. The problem
considered is dynamic; therefore, the interatomic forces can vary with time (i.e. f12 =
f12(a(t); b(t)), f13 = f13(a(t); b(t)) and f32 = f32(a(t); b(t))) while they are uniform
in space due to the fact that the deformation is uniform. At the upper boundary,
t = f 0

y =a, consistent with the continuum solution of traction at the boundary and
the continuum expectation of uniform stress in the horizontal direction. Similarly, at
the right-hand boundary t = f 0

x=b. The rate of deformation and stress work rate in
table 1 are also in complete agreement with continuum mechanics expectations.

The displacement and velocity ¯elds for the system are, respectively,

ui(x; t) = li
x(a ¡ a0)ex + li

y(b ¡ b0)ey and _ui(x; t) = li
x _aex + li

y
_bey : (6.1)

In (6.1), li
x = 0; 1; 2 : : : ; Nx and li

y = 0; 1; 2 : : : ; Ny denote the column and row
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numbers, respectively, of i in the lattice; Nx and Ny are the total number of columns
and total number of rows, respectively, and ex and ey are unit base vectors in the
x and y directions, respectively. Under this deformation, the ¯rst term in (1.1) has
the form

¡ 1
«

mi _ui « _ui = ¡ 1
«

mi

Ã
li
xli

x _a _a li
xli

y _a _b

li
xli

y _a_b li
yli

y
_b_b

!
: (6.2)

This quantity varies with the positions of the atoms in the array, leading to a virial
stress tensor that increases in the x direction as well as in the y direction. This is
not in accord with the uniform strain and uniform rate of deformation in the forms
of

" =
µ

(a ¡ a0)=a0 0
0 (b ¡ b0)=b0

¶
and D =

µ
_a=a 0
0 _b=b

¶
: (6.3)

This apparent contradiction to the deformation and loading reality is, again, a mani-
festation of the irrelevance of ¦ and ¹¦ to the concept of continuum stress and their
lack of physical signi¯cance theoretically shown in xx 2 and 4.

The calculation of the Cauchy stress in (5.10) does not involve ad hoc speci¯ca-
tion of a relevant volume. The evaluation of the stress in (4.6) for any set of atoms
requires the identi¯cation of a proper « whose extent is not always obvious. Under
conditions of arbitrary and inhomogeneous deformations, the identi¯cation of « is
ambiguous and somewhat uncertain. In the example of ¯gure 10, the overall defor-
mation is homogeneous across di®erent unit cells and periodicity of the lattice is
maintained. In addition, locality of interatomic forces is assumed through the choice
of the relatively small cut-o® radius. Therefore, « can be taken as the volume of
the unit cell, i.e. « = ab. Under this condition, the mechanical stress in (4.6) (or
the mechanical part (second term) of the virial stress in (1.1)) for the problem in
¯gure 10a is

1
2 «

X

j ( 6= i)

rij « fij =
µ

(f32 + 2f13 sin £ )=b 0
0 (f12 + 2f13 cos £ )=a

¶
: (6.4)

This coincides with the Cauchy stress ¾ in table 1. This agreement occurs because
of the simple geometry of the problem, the uniformity of loading and the absence
of non-local interactions. A proper perspective is in order here. The stresses in (4.6)
and (5.10) are di®erent representations of the Cauchy stress. The stress ¯eld in (5.10)
has a work-conjugate deformation ¯eld (equations (5.6) and (5.13)) and always makes
the same work contribution to deformation as the interparticle force system over any
¯nite volume element. The stress in (4.6) does not have a work-conjugate deformation
¯eld identi¯ed for it. Indeed, it is de¯ned without regard to any possible work-
conjugate deformation ¯eld. However, under the conditions of uniform deformation,
equations (4.6) and (5.10) yield identical results that have work conjugacy with
respect to the deformation ¯eld.

An account of stress work rate and work equivalence between the EC and the
atomic system in ¯gure 10 can provide further insight here. First, note that, since
deformation and stress are uniform, analysis of stress work rate for a unit cell is
representative for the whole specimen. Speci¯cally, the results in table 1 yield that
Z

V

¾ : D dV = Nc(f32 _a + f12
_b + 2f13 _r) = 1

2

NX

i= 1

NX

j = 1 ( 6= i)

fij ¢ _rij =
NX

i= 1

f in t
i ¢ _ui; (6.5)
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where Nc = NxNy is the total number of unit cells in the specimen in ¯gure 10, N
is the total number of atoms in the system as before, f32 _a + f12

_b + 2f13 _r is the work
rate of interatomic forces in a rectangular unit cell and r =

p
a2 + b2. This equation

shows that the EC stress ¯eld in table 1 indeed has the same internal work rate as
the atomic force system in ¯gure 10 and (5.29) is satis¯ed.

It is important to point out that the virial stress ¹¦ in (1.1) for the
problem in ¯gure 10 combines contributions from both (6.2) and (6.4). It
cannot and does not satisfy the work conjugacy requirement in (6.5). In
fact, ¹¦ : D and

R
V

¹¦ : D dV have no meaning whatsoever. This example
provides another direct illustration of the fact that the virial stress is not
a measure of stress. It does not measure mechanical force. It cannot yield
stress work.

7. Discussion and conclusions

The analyses in this paper have reiterated and rea±rmed the interpretation of the
virial stress as a measure for momentum change in space, con¯rming the under-
standing in the literature. With regard to the mechanical stress tensor at the scale
of individual atoms or small sets of atoms, it has been shown that the kinetic-energy
term in the virial stress leads to violation of balance of momentum and loss of physi-
cal signi¯cance as a measure for mechanical interaction between material points. This
conclusion points out that the `virial stress’ is not the Cauchy stress or any other
form of mechanical stress. For the simple conditions of rigid-system translation, uni-
form tension and harmonic atomic oscillations, the virial stress has been shown to
yield apparently erroneous interpretations of the loading conditions. Although the
kinetic-energy term is usually small compared with the interatomic force term for
solids, it may be the dominant term for gases. This term is neither related to internal
interactions between particles in a system nor related to forces between particles and
agents external to the system (such as an external wall) in general. Therefore, this
term is irrelevant to the concept of stress. This conclusion holds true both at the
individual atom level and at the system level in the dynamic time-resolved sense. It
also holds at the system level in the time- and space-averaged statistical sense, in
general. The virial stress in the form of (1.1), averaged over time and over the whole
system for a system within a rigid non-deforming container, may be related to the
statistical average of the external forces between the system and the container. Even
for this extremely narrow interpretation, the formula does not provide a measure for
stress in any sense, since, for intrinsically dynamic systems (temperature above 0 K),
internal forces (stress) and external forces are not equal. The virial stress as de¯ned
in (1.1) and (1.7) has the geometric interpretation of being a measure for the momen-
tum change in a ¯xed spatial region. This interpretation does not assign any physical
signi¯cance to the virial stress as a possible measure of mechanical interaction. The
preceding discussions focused on the analytical error and the conceptual °aw in the
historic derivations of the virial stress that essentially resolve around the improper
use of the equation for spatial balance of momentum. The results demonstrate that
the interatomic force term of the virial stress alone constitutes a valid stress measure
and can be identi¯ed with the Cauchy stress.

It must noted here that some authors have argued that only the °uctuation part
of the atomic velocity (rather than the total absolute velocity) should be used in

Proc. R. Soc. Lond. A (2003)



2384 M. Zhou

the virial formula (1.1). This version of the virial stress (4.13) has been put forth
by Irving & Kirkwood (1950), Hardy (1982), Yasui et al . (1999) and Nakane et
al . (2000), among others. It has been shown that this version does not represent a
measure for mechanical stress either. Instead, it measures momentum °ow in space
relative to a moving frame, as opposed to a ¯xed frame for (1.1).

By de¯nition, stress is the mechanical force between material mass points in a
continuum per unit area. A review of the de¯nition in ¯gure 1 (see also, for example,
Malvern 1969, ¯g. 3.2, p. 69) makes this clear. First, we make a cut through a
point in a body. This is a material cut which moves with the material point under
consideration. Note that the de¯nition is for all conditions, fully dynamic as well
as static. It is not necessary to know what the velocity at the point of interest
is. This is because, by de¯nition, the cut always follows the mass point. The force
between the two sides (or between the mass points on the two sides of the material
cut) per unit area gives the internal traction or Cauchy stress components. It is
obvious in this de¯nition that stress has nothing to do with velocity. Another way to
look at this issue is through balance of momentum. Note the material description of
balance of momentum in ¯gure 3. By de¯nition, Se is the deforming surface of the
¯xed amount of mass ¢m, and therefore there is no mass convection through Se.
The Cauchy stress tensor gives the traction (force) on Se through t = n ¢ ¾. This
de¯nition clearly states that stress has nothing to do with mass convection. In other
words, stress is a measure of the e®ect of pure force on momentum change associated
with a ¯xed amount of mass (not change in momentum contained in a spatial region).
In contrast, the `virial stress’ is de¯ned using a spatial cut which is ¯xed in space.
This de¯nition is very clearly re°ected in many papers. Speci¯cally, the `virial stress’
components are the components of the momentum vector passing through a unit area
of a ¯xed spatial plane in a unit amount of time (see example in ¯gure 4 and (3.2) for
an illustration). This de¯nition is very similar to the de¯nition of Cauchy stress using
the material description of balance of momentum. Apparently, momentum change in
space is not just due to force alone. Momentum can transfer in space purely by the
force-free kinetic motion of mass. This de¯nition of the `virial stress’ is very clear
in ¯gure 3 and (2.4), (2.5) and (4.1). In summary, the term `virial stress’ is, in a
way, a misnomer. It does not measure stress. It is very much a stress-like quantity
in that (i) it has the unit of force/area, and (ii) it satis¯es the spatial equation of
balance of momentum in a way similar to the Cauchy stress satisfying the material
equation of balance of momentum. Apparently, it is these aspects that may have been
the source of confusion in the literature. Does the `virial stress’ somehow measure a
force per unit area between a °owing mass system and a pure non-physical spatial
plane? The answer is no. This is exactly one of the misconceptions some hold (see, for
example, Cheung & Yip 1991), as is pointed out and discussed in x 4 b. Mechanical
force cannot and does not exist between mass and space. Force is the mechanical
interaction between mass points. If one still insists that force can be applied on a
pure spatial plane and a pure spatial plane can apply a force on mass, one would
be forced to conclude, according to Newton’s third law, that the free-°owing system
in ¯gure 4 would `experience’ a resistance to its motion due to pure space and slow
down as a consequence. We know this is totally false. The virial stress is not the
Cauchy stress or some other `mysterious’ form of mechanical stress.

This conclusion demonstrates that, for gas systems in macroscopic steady-state,
the statistical average of the Cauchy stress tensor h¾i over time and space is an
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isotropic tensor and is not equal to the negative of the macroscopic pressure tensor
( ¡ p) for the system. This is contrary to Newton’s belief given in Principia and is
a re°ection of the fundamental di®erence between an intrinsically dynamic system
in steady-state and a system in static equilibrium. The isotropic statistical average
of the internal stress tensor h¾i is equal to the negative of external (macroscopic)
pressure tensor only at absolute zero when all molecular motions cease.

In order to see why and how this confusion about stress and pressure can occur,
let us use the phrase `external stress’ to denote the average external force per unit
area for a material system (gases, solids and °uids). This external stress (traction) is
applied on the atomic system by, for example, the wall of a container in contact with
the atomic system. For intrinsically dynamic systems (temperature above absolute
zero), this external stress (or traction) is not equal to the internal stress (often called
stress) in the body. This is the key. If one uses Newton’s second law, one can show
that the external stress (pressure) and the internal stress (stress) di®er and are not
equal. This paper has shown that the stress (internal) has nothing to do with velocity
and the virial formula for this stress concept is incorrect.

For solids, the external and internal stress tensors are fully populated and are
not diagonal. The internal stress is what causes solids to, for example, fracture. We
are not very interested in the external stress for solids, since it does not measure
the internal material interaction and is inconsequential as far as deformation and
fracture are concerned (externally applied stress `causes’ fracture to occur only by
inducing ìnternal stress’ between mass points).

For gases (and °uids), on the other hand, we, most of the time, are interested
in the external stress (often called pressure because it is an isotropic tensor). The
reason is gases do not fracture; gas deformation does not cause irreversible internal
material structure changes such as fracture from a macroscopic perspective. In this
sense, internal stress is relatively `inconsequential’ for gases and °uids. Instead, it
is the pressure e®ect of gases on the external surroundings that we are more often
concerned with. Therefore, although we do not often explicit say it, the term `gas
pressure’ implies the meaning of external pressure. This pressure, when de¯ned as a
measure for external force interactions between particles, indeed has a velocity term.
Its precise meaning is that the external pressure is the sum of the internal pressure
(stress) and a kinetic-energy term. Note that the three strict conditions under which
the gas pressure formula (4.9) can be used must be explicitly understood and cannot
be neglected. One must realize that stress (internal) and pressure (when de¯ned as
external force per unit area) are fundamentally di® erent and not equal. They are
related through the kinetic-energy (velocity) term in (4.9). Most of the time, we do
not need to use (4.10) for gases. This fact and the confusion that stress and pressure
are equal or the same for gases lead people to think stress in gases depends on
velocity. This misconception also has led many to think stress for solids has to do
with velocity (or kinetic energy).

Since a very signi¯cant of amount of research has been conducted using (1.1), it
is essential to quantify the relative magnitudes of the two terms in these equations.
In general, the kinetic-energy term is dominant for gases (the error is 100% for ideal
gases, since, by de¯nition, they do not have interatomic force interactions). For °u-
ids, the kinetic-energy term is large. Therefore, extreme care must be taken in such
cases when stress or internal pressure is calculated using (1.1). Signi¯cant errors
may exist if the calculated result is interpreted as a measure for the force interaction

Proc. R. Soc. Lond. A (2003)



2386 M. Zhou

between material points inside a system. This interpretation does not always happen
since the internal interaction in gases and °uids are not always the quantity causing
consequences in cases involving °uids and gases. Instead, the calculated pressure is
often correctly interpreted as a measure for the force (structural) interaction between
the system and an external wall. For solids, the situation is di®erent. It is generally
believed and expected that the kinetic-energy term is small compared with the inter-
atomic force term. However, detailed molecular dynamics calculations conducted for
copper nanowires by Liang & Zhou (2003) show that the numerical error can be
very signi¯cant when (1.1) is used instead of (4.6). Speci¯cally, under conditions of
tensile deformations at an initial temperature of 300 K and strain rates between 107

and 109 s¡1, the ratio between the magnitudes for the components of the two terms
in (1.1) in the loading direction (kinetic-energy component divided by the force com-
ponent) can be up to or more than 100%. Since these calculations are carried out
using symmetric velocity loading conditions, there is no system-level translation.
The ratio is indeed very small (up to 4{5%) for deformation up to the yield point.
However, after the onset of plastic deformation, the kinetic-energy term can be as
high as 35% of the interatomic force term. Under conditions of thermal vibrations
without external loading (residual stress after specimen fractures, for example), the
velocity term can be equal to or even higher than the interatomic force term. Note
that stresses are not equal to zero even if no external mechanical loading is applied.
This is because at ¯nite temperatures atomic systems are intrinsically dynamic, and
therefore external and internal forces are not equal in general. It is very important
to point out that correct stress calculation is essential for solids since internal stress
causes failure in solids and internal stresses actually carried by solids at yielding or
fracture are the only correct and true measures of strength.

An EC for dynamically deforming atomistic particle systems is de¯ned. The sys-
tematic delineation of internal and external interactions, the continuum-MD system
equivalence, and the resulting Cauchy stress ¯eld along with its work-conjugate defor-
mation ¯eld established here have further illustrated the irrelevance of mass transfer
to the evaluation of stress. The equivalence of the continuum to discrete atomic sys-
tems includes (i) preservation of linear and angular momenta, (ii) conservation of
internal, external and inertial work rates, (iii) conservation of mass, and (iv) preser-
vation of kinetic energy. It has been shown that the work- and momentum-preserving
Cauchy stress de¯ned here and the mechanical part of the virial stress coincide under
conditions of uniform deformation. However, in addition to its work conjugacy not
shared by the mechanical part of the virial stress, the Cauchy stress ¯eld de¯ned
avoids possible ambiguities in the determination of the exact volume necessary in
the evaluation of the mechanical part of the virial stress for a speci¯c set of atoms.
We note that the EC stress ¯eld de¯ned here, along with other ¯elds, is also com-
putationally intensive to obtain. In contrast, the mechanical stress in (4.6) permits
direct and expeditious computation.

The continuum ¯elds for the EC can be piecewise continuous, leading to poten-
tially large °uctuations from atom to atom. This is a re°ection of the e®ects of atomic
scale material heterogeneities under dynamic equivalence at interatomic scales. The
resolution of such interatomic features is important for problems involving hetero-
geneities and steep gradients of ¯elds, such as interfaces and crack tips. The ¯elds
obtained permit continuum treatments, including averaging across length-scales. The
continuum ¯elds obtained allowed other derivative ¯eld quantities to be obtained.
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In particular, since the mass density and velocity ¯elds are already explicitly given,
the momentum density is simply the product of the mass-density function and the
velocity function. All ¯eld quantities for the EC are regular continuum quantities, the
momentum density for the EC should also be interpreted in the regular continuum
sense.

It is worthwhile to note that the approach taken here fully admits non-local atom-
istic interactions. The continuum ¯elds obtained re°ect the non-local characteris-
tics of the MD solutions. Because of this reason, the superposed solution embodied
in (5.12), (5.13), (5.19), (5.22), (5.23), (5.26) and (5.27) and the solution obtained
by taking V = V e are not identical except for conditions of uniform deformation or
uniform loading. The former preserves global work rates and momenta but lacks gen-
eral di®erential compatibility of the kinematic quantities. The latter fully preserves
the global work rates and momenta and satis¯es the requirements of kinematic dif-
ferential compatibility. Moreover, such full consistency is also achieved for the V e

de¯ned by any subset of an atomistic system. This consistency at any scale allows
the e®ects of non-locality and scaling to be quanti¯ed using a continuum framework.

To achieve the dynamic equivalence between the continuum and the particle sys-
tem on any size scale, the analysis involves a systematic delineation of internal and
external interatomic interactions, delineation of surface and body forces, sharing
of a bond by neighbouring elements and distribution of atomic mass to elements
connected to an atom. These processes use parameters & (equation (5.3)), ² (equa-
tion (5.4)), µ (equation (5.5)) and ¹ (equation (5.15)). It is important to point out
that values for these parameters are independent of the dynamic principle of virtual
work (PVW), and therefore cannot be determined by the PVW beyond the extent
that the sum of each of these parameters be unity for the corresponding bond or
atom. Any value in the ranges given earlier for these parameters will allow the work
and momentum equivalence to be maintained. Realistic determination of the values
should depend on material structure, symmetry, quantum mechanical description of
the spatial shape of the interatomic bonds and consistency with continuum mechan-
ics expectations at higher scales. In general, for example, ² for an element can be
determined by the dihedral angle in that element as a fraction of the sum of all
such angles associated with the bond. For periodic and amorphous structures alike,
& can be de¯ned through &e

I = ’e=
Pk

e ’e, with ’e being the solid angle (three dimen-
sions) or angle (two dimensions) subtended by an element and k being the number
of elements connected to an atom. The determination of ¹ should use a similar con-
sideration for uniform traction distributions on planar surfaces for the type of shape
functions used. Considerations for the determination of µ are fully given in x 5. It is
important to point out that in the limit of V e = V and Se = S, & , ² and ¹ become
unnecessary and irrelevant.

It is useful to point out that xx 2 and 4 have reiterated the interpretation of the
virial stress as a measure for momentum °ux in space. It has been pointed out that
the virial stress must not be confused for, and must not be used as a measure for,
mechanical stress. Instead, the interatomic force term in the virial formula fully
and correctly de¯nes the Cauchy stress. Section 5 has provided a new framework
for transitioning from MD descriptions to continuum descriptions. This framework
goes beyond the evaluation of stress. The conclusions of the two parts on stress are
consistent with each other and reinforce each other.
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Figure 11. One-dimensional tensile deformation of a lattice with thermal ° uctuations.

Finally, a discussion is in order concerning the e®ect of atomic thermal °uctuations
on stress. MD models o®er fully dynamic explicit resolution of the absolute atomic
motions. The velocity of a particle can be decomposed into a structural dynamic
part and a thermal °uctuation part, i.e. _ui = _¹ui + _~ui, where _~ui is the high-frequency
thermal velocity which is not explicitly resolved at the size and time-scales of most
continuum models. In these models, only the structural deformation part, _¹ui, is
explicitly resolved. This decomposition allows the (higher-scale) continuum kinetic
energy and the thermal part of the kinetic energy to be treatment separately. This
partitioning of motion at higher scales could be a source of confusion, leading to
a perception that, somehow, mass transfer in space relative to a certain reference
frame may contribute to stress. A full analysis of this issue using the EC framework
presented in this paper would by itself be a signi¯cant development and constitute a
separate publication. However, a relatively simple discussion can be pursued here to
illustrate that this issue should not be confused with the calculation of stress or be
construed as to giving rise to a dependence of stress on mass transfer. To this e®ect,
we consider the one-dimensional tensile deformation with thermal °uctuation of a
lattice as shown in ¯gure 11. For simplicity, without loss of generality, we assume that
the particle motions are only in the x direction, and therefore the lattice parameter
b remains constant throughout the deformation. Furthermore, we assume there is
no interatomic force in the y direction due to the fact that the interatomic distance
b is greater than the cut-o® radius of the atomic potential. Note that the lattice
parameter a can be decomposed into a structural deformation part and a thermal
vibration part as a(t) = ¹a(t) + ~a(t). Usually, ~a(t) is a small perturbation around the
`equilibrium’ value ¹a(t) (for thermal °uctuation), i.e. j~a(t)j ½ ¹a(t). We also assume
that the macroscopic motion of the system is such that ¹a(t) is uniform everywhere.
The direct stress analysis in x 4 a and the EC theory in x 5 give the same stress
interpretation for this example. This consistency is both at the absolute atomic scale
and at the continuum scale. Speci¯cally, according to (4.6) and (5.10) the atomic
level fully time-resolved stress is

¼ 11(t) =
f (a(t))

b
; (7.1)
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where atomic force f(a(t)) = dU=da, with U being the potential energy of a unit
cell. Since the thermal °uctuation ~a(t) is outside the purview of an observer at the
continuum scale, equations (4.6) and (5.10) indicate that continuum level stress based
on the structural deformation is

¹¼ 11(t) =
f(¹a(t))

b
: (7.2)

Note that ¼ 11(t) oscillates around ¹¼ 11(t) at the high frequency of thermal °uctua-
tions. Since the thermal oscillation of the atomic force f(a(t)) around f(¹a(t)) at ¹a is
small and harmonic,

¹¼ 11(t) =
1
½

Z t + t0

t

¼ 11( ½ ) d ½ ; (7.3)

where t0 is the time period of the thermal oscillation. The fully time-resolved strain
rate and the macroscopic strain rate are, respectively, D11 = _a=a and ¹D11 = _¹a=¹a.
Consequently, the stress work in a unit cell associated with one cycle of thermal
motion is

Z t + t0

t

ab¼ 11( ½ )D11( ½ ) d ½ =
Z t + t0

t

f(a) _a d ½ = U (a)j·a·a = 0: (7.4)

The stress work over the macroscopic deformation from lattice size ¹a(t1) = ¹a1 to size
¹a(t2) = ¹a2 is Z t2

t1

¹ab¹¼ 11(t) ¹D11(t) dt =
Z t2

t1

f(¹a) _¹a dt = U (¹a)j·a2
·a1

:

These thermal and structural stress works are equal to the respective mechanical
works done by the interatomic force in each unit cell, establishing work conjugacy
of the above stress measures. They also establish a direct work equivalence between
the continuum stress interpretations (from both (4.6) and (5.10)) and the original
atomic force ¯eld. They clearly demonstrate that stress has nothing to do with
mass transfer at both the explicit time-resolved atomic level and at the macroscopic
continuum level where thermal ° uctuations are accounted for separately from the
structural deformation of an atomic system.

On the other hand, the virial stress from (1.1) is

¦ 11(t) = ¡ mj _uij2
ab

+
f (a(t))

b
(7.5)

at the fully time-resolved atomic level, and

¹¦ 11(t) = ¡ mj _¹uij2

¹ab
+

f (¹a(t))
b

(7.6)

at the macroscopic structural level. Note that (7.6) is a strict interpretation of (1.1)
at the macroscopic level, since the thermal velocity _~ui is outside the purview of the
macroscopic observer and he simply does not `see’ the thermal °uctuations. It is
clear that, unlike ¹¼ 11(t) in (7.3),

¹¦ 11(t) 6= 1
½

Z t + t0

t

¦ 11( ½ ) d ½ : (7.7)
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This is inconsistent with the cyclic nature of stress variation due to thermal oscilla-
tions. Additionally, since, in general,

Z t2

t1

ab¦ 11( ½ )D11( ½ ) d ½ 6=
Z t2

t1

f(a) _a d ½ ; (7.8)

¦ 11( ½ ) is not work conjugate to the deformation and does not yield stress work. This
aspect is also clearly seen at the structural deformation level since, in general,

Z t2

t1

¹ab ¹¦ 11(t) ¹D11(t) dt 6=
Z t2

t1

f(¹a) _¹a dt (7.9)

cannot represent stress work in any sense.
To summarize, the Cauchy stress in (4.6) and (5.10) correctly measures the

mechanical interaction and internal mechanical work rate at both the scale of a
fully time-resolved analysis and the scale of a macroscopic continuum analysis. In
contrast, the virial stress does not yield meaningful interpretation for stress and
mechanical work at either scale. This simple example illustrates that even under the
conditions of higher-scale thermal-mechanical analyses, mass transfer must not enter
into the expression for stress.

To end this paper, we again note that some authors have presented an alternate
version of the virial stress formula that involves the use of the °uctuation velocity
_~ui in (1.1) rather than the absolute velocity _ui (cf. Irving & Kirkwood 1950; Hardy
1982; Yasui et al . 1999; Nakane et al . 2000). An interpretation using their formulae
yields

~¦ 11(t) = ¡ mj _~uij2
ab

+
f(a(t))

b
: (7.10)

While (7.5) and (7.6) are written for an observer ¯xed in space (with two di®erent
time resolutions for his analysis), equation (7.10) can be regarded as being written
from the perspective of an observer travelling with the `streaming’ velocity of _¹ui.
Obviously, just like (7.5) and (7.6), equation (7.10) cannot represent stress or provide
stress work in any sense, since

~¦ 11(t) 6= 1
½

Z t + t0

t

¦ 11( ½ ) d ½ ; ~¦ 11(t) 6= 1
½

Z t + t0

t

¼ 11( ½ ) d ½ (7.11)

and
Z t2

t1

ab ~¦ 11( ½ )D11( ½ ) d ½ 6=
Z t2

t1

f(a) _a d ½ : (7.12)

These inequalities show that ~¦ 11(t) provides inconsistent interpretations of the load-
ing conditions and interatomic mechanical work in the atomic system at hand. It is
obvious that (7.5), (7.6) and (7.10) represent momentum transfer in space from the
perspectives of their respective frames of reference with speci¯c levels of resolution.
They must not be regarded as stress in any sense.
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